Simulating and Studying the Effectiveness of FACTS Devices in Electrical Networks

  • Guseyngulu B. GULIYEV
  • El’shan K. MANAFOV
  • Tofik R. YAGUBLU
  • Farid H. GUSEYNOV
Keywords: FACTS devices, steady-state mode, IEEE 9-node test circuit, Power World, power line transmission capacity, power system, operation mode analysis

Abstract

Matters concerned with applying flexible AC power transmission system (FACTS) devices in electric power systems to improve their efficiency and stability are addressed. The results of simulating the IEEE 9-node test circuit with a FACTS device connected to the most heavily loaded power lines are presented. Numerical experiments with the power system model for steady-state operation were carried out using the Power World software package. The data obtained from simulating the steady-state mode of the IEEE 9-node circuit with and without the FACTS device were compared with each other. The comparison results have shown that by connecting the FACTS device it becomes possible to increase the power line transmission capacity and improve the voltage profile at the circuit nodes, thereby improving the power system stability and efficiency. The study results will be used in solving the problem of achieving more stable and efficient operation of the Azerbaijani power system.

Author Biographies

Guseyngulu B. GULIYEV

(Azerbaijan Technical University, Baku, Azerbaijan) – Dean of the Power Engineering and Automation  Faculty, Professor of the Automation and Control Dept., Dr. Sci. (Eng.).

El’shan K. MANAFOV

(National Aviation Academy, Baku, Azerbaijan) – Associate Professor of the Energetics and Automatics Dept.. Cand. Sci. (Eng.).

Tofik R. YAGUBLU

(Azerbaıjan Energy Research and Desıgn Engıneerıng Instıtute; Management of Projects under Construction, Baku, Azerbaijan) – Postgraduate Student; Head of the Energy Dept.

Farid H. GUSEYNOV

(Azerbaijan State Oil and Industrial University; National Aviation Academy,  Baku, Azerbaijan) – Postgraduate Student; Teacher of the Energetics and Automatics Dept

References

1. Воропай Н.И. Направления и проблемы трансформации электроэнергетических систем. – Электричество, 2020, № 7, с. 12–21.
2. Vanishree J., Ramesh V. Optimization of Size and Cost of Static VAR Compensator using Dragonfly Algorithm for Voltage Profile Improvement in Power Transmission Systems. – International Journal of Renewable Energy Research, 2018, 8(1), pp. 56–66.
3. Merah H. et al. Sizing and Sitting of Static VAR Compensator (SVC) Using Hybrid Optimization of Combined Cuckoo Search (CS) and Antlion Optimization (ALO) Algorithms. – Energies, 2022, 15(13): 4852, DOI:10.3390/en15134852.
4. Rambabu M., Kumar G.V.N., Sivanagaraju S.S. An İntermittent Contingency Approach with Optimal Placement of Static VAR Compensator in a Renewable-İntegrated Power Systems. – International Journal of Ambient Energy, 2019, 42(2), DOI:10.1080/01430750.2019.1611649.
5. Biswas P.P. et al. Optimal Placement and Sizing of FACTS Devices for Optimal Power Flow in a Wind Power İntegrated Electrical Network. – Neural Computing and Applications, 2021, 33 (2), DOI:10. 1007/s00521-020-05453-x.
6. Hashimov A.M., Guliyev H.B., Babayeva A.R. Managing Shunt Reactors in Accordance to Fuzzy Controllers for Stabilization of Voltage in High Tension Tire-Cover. – International Journal on Technical and Physical Problems of Engineering (IJTPE), 2017, ıss. 30, vol. 9, No. 1, pp. 18–-22.
7. Balametov A.B., Salimova A.K., Balametov E.A. Development and İmplementation of 20 kv İntelligent Power Distribution Networks. – International Journal on Technical and Physical Problems of Engineering (IJTPE), 2017, iss. 30, vol. 9, No. 1, pp. 7–11.
8. Тухватуллин М.М. и др. Анализ современных устройств FACTS, используемых для повышения эффективности функционирования электроэнергетических систем России. – Электротехнические системы и комплексы, 2015, № 3 (28), с. 41–46.
9. Баринов В.А., Маневич А.С., Мурачев А.С. Применение в энергосистемах нового класса распределенных сетевых управляемых устройств. – Известия РАН. Энергетика, 2016, № 3, с. 3–14.
10. Belyaev A.N., Izotova K.A., Kashin I.V. Stability of Ultra Long Distance AC Power Transmission Lines with Controlled Shunt Compensation Devices. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, DOI:10.1109/EIConRus.2018.8317163.
11. Pertl M. et al. Transient Stability İmprovement: A Review and Comparison of Conventional and Renewable-Based Techniques for Preventive and Emergency Control. – Electrical Engineering, 2018, 100 (3), DOI:10.1007/s00202-017-0648-6.
12. Martínez E.B., Angeles-Camacho C. Technical Comparison of FACTS Controllers in Parallel Connection. – Journal of Applied Research and Technology, 2017, 15(1), DOI:10.1016/j.jart.2017.01.001.
13. Gandoman F.H. et al. Review of FACTS Technologies and Applications for Power Quality in Smart Grids with Renewable Energy Systems. – Renewable and Sustainable Energy Reviews, 2018, vol. 82, pp.502–514, DOI:10.1016/j.rser.2017.09.062.
14. Katsivelakis M., Bargiotas D., Daskalopulu A. Transient Stability Analysis in Power Systems Integrated with a Doubly-Fed Induction Generator Wind Farm. – 11th International Conference on Information, Intelligence, Systems and Applications, 2020, DOI:10. 1109/IISA50023.2020.9284361.
15. Халилов Э.Д. Моделирование повышения эффективности электрических сетей средствами устройств FACTS. – Энергетика. Известия высших учебных заведений и энергетических объединений СНГ, 2017, т. 60, № 4, с. 341–351.
16. Pasiopoulou I. et al. Effect of Load Modelling on Power Systems Stability Studies. – The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020), 2021, DOI:10.1049/icp.2021.1266.
17. Tina G.M., Licciardello S., Stefanelli D. Strategic Role of New Power Generation Assets for the Security of the Future Italian Power System. – 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 2019, DOI:10.1109/EEEIC.2019.8783381.
#
1. Voropay N.I. Elektrichestvo – in Russ. (Electricity), 2020, No. 7, pp. 12–21.
2. Vanishree J., Ramesh V. Optimization of Size and Cost of Static VAR Compensator using Dragonfly Algorithm for Voltage Profile Improvement in Power Transmission Systems. – International Journal of Renewable Energy Research, 2018, 8(1), pp. 56–66.
3. Merah H. et al. Sizing and Sitting of Static VAR Compensator (SVC) Using Hybrid Optimization of Combined Cuckoo Search (CS) and Antlion Optimization (ALO) Algorithms. – Energies, 2022, 15(13): 4852, DOI:10.3390/en15134852.
4. Rambabu M., Kumar G.V.N., Sivanagaraju S.S. An İntermittent Contingency Approach with Optimal Placement of Static VAR Compensator in a Renewable-İntegrated Power Systems. – International Journal of Ambient Energy, 2019, 42(2), DOI:10.1080/01430750.2019.1611649.
5. Biswas P.P. et al. Optimal Placement and Sizing of FACTS Devices for Optimal Power Flow in a Wind Power İntegrated Electrical Network. – Neural Computing and Applications, 2021, 33 (2), DOI:10. 1007/s00521-020-05453-x.
6. Hashimov A.M., Guliyev H.B., Babayeva A.R. Managing Shunt Reactors in Accordance to Fuzzy Controllers for Stabilization of Voltage in High Tension Tire-Cover. – International Journal on Technical and Physical Problems of Engineering (IJTPE), 2017, ıss. 30, vol. 9, No. 1, pp. 18–-22.
7. Balametov A.B., Salimova A.K., Balametov E.A. Development and İmplementation of 20 kv İntelligent Power Distribution Networks. – International Journal on Technical and Physical Problems of Engineering (IJTPE), 2017, iss. 30, vol. 9, No. 1, pp. 7–11.
8. Tuhvatullin М.М. et al. Elektrotekhnicheskie sistemy i kompleksy – in Russ. (Electrical systems and complexes), 2015, No. 3 (28), pp. 41–46.
9. Barinov V.A., Manevich A.S., Murachev A.S. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy), 2016, No. 3, pp. 3–14.
10. Belyaev A.N., Izotova K.A., Kashin I.V. Stability of Ultra Long Distance AC Power Transmission Lines with Controlled Shunt Compensation Devices. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, DOI:10.1109/EIConRus.2018.8317163.
11. Pertl M. et al. Transient Stability İmprovement: A Review and Comparison of Conventional and Renewable-Based Techniques for Preventive and Emergency Control. – Electrical Engineering, 2018, 100 (3), DOI:10.1007/s00202-017-0648-6.
12. Martínez E.B., Angeles-Camacho C. Technical Comparison of FACTS Controllers in Parallel Connection. – Journal of Applied Research and Technology, 2017, 15(1), DOI:10.1016/j.jart.2017.01.001.
13. Gandoman F.H. et al. Review of FACTS Technologies and Applications for Power Quality in Smart Grids with Renewable Energy Systems. – Renewable and Sustainable Energy Reviews, 2018, vol. 82, pp.502–514, DOI:10.1016/j.rser.2017.09.062.
14. Katsivelakis M., Bargiotas D., Daskalopulu A. Transient Stability Analysis in Power Systems Integrated with a Doubly-Fed Induction Generator Wind Farm. – 11th International Conference on Information, Intelligence, Systems and Applications, 2020, DOI:10. 1109/IISA50023.2020.9284361.
15. Halilov E.D. Energetika. Izvestiya vysshih uchebnyh zavedeniy i energeticheskih ob"edineniy SNG – in Russ. (Energy. Proceedings of Higher Educational Institutions and Energy Associations of the CIS), 2017, vol. 60, No. 4, pp. 341–351.
16. Pasiopoulou I. et al. Effect of Load Modelling on Power Systems Stability Studies. – The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020), 2021, DOI:10.1049/icp.2021.1266.
17. Tina G.M., Licciardello S., Stefanelli D. Strategic Role of New Power Generation Assets for the Security of the Future Italian Power System. – 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 2019, DOI:10.1109/EEEIC.2019.8783381
Published
2023-10-26
Section
Article