Моделирование и исследование эффективности применения устройств FACTS в электрических сетях
Аннотация
Статья посвящена вопросам применения устройств гибких систем передачи электроэнергии переменного тока FACTS в электроэнергетических системах для повышения их эффективности и устойчивости. Представлены результаты моделирования IEEE 9-узловой тестовой схемы с подключением устройства FACTS к наиболее нагруженным линиям электропередачи. С использованием программного комплекса Power World проведены численные эксперименты с моделью энергосистемы для установившегося режима работы. Сравнение результатов расчета установившегося режима IEEE 9-узловой схемы при наличии и отсутствии устройства FACTS показало, что подключение устройства FACTS позволяет увеличить пропускную способность линий электропередачи, улучшить профиль напряжения в узлах схемы и тем самым повысить устойчивость и эффективность работы энергосистемы. Результаты исследования будут использованы при решении проблемы повышения устойчивости и эффективности работы Азербайджанской энергосистемы.
Литература
2. Vanishree J., Ramesh V. Optimization of Size and Cost of Static VAR Compensator using Dragonfly Algorithm for Voltage Profile Improvement in Power Transmission Systems. – International Journal of Renewable Energy Research, 2018, 8(1), pp. 56–66.
3. Merah H. et al. Sizing and Sitting of Static VAR Compensator (SVC) Using Hybrid Optimization of Combined Cuckoo Search (CS) and Antlion Optimization (ALO) Algorithms. – Energies, 2022, 15(13): 4852, DOI:10.3390/en15134852.
4. Rambabu M., Kumar G.V.N., Sivanagaraju S.S. An İntermittent Contingency Approach with Optimal Placement of Static VAR Compensator in a Renewable-İntegrated Power Systems. – International Journal of Ambient Energy, 2019, 42(2), DOI:10.1080/01430750.2019.1611649.
5. Biswas P.P. et al. Optimal Placement and Sizing of FACTS Devices for Optimal Power Flow in a Wind Power İntegrated Electrical Network. – Neural Computing and Applications, 2021, 33 (2), DOI:10. 1007/s00521-020-05453-x.
6. Hashimov A.M., Guliyev H.B., Babayeva A.R. Managing Shunt Reactors in Accordance to Fuzzy Controllers for Stabilization of Voltage in High Tension Tire-Cover. – International Journal on Technical and Physical Problems of Engineering (IJTPE), 2017, ıss. 30, vol. 9, No. 1, pp. 18–-22.
7. Balametov A.B., Salimova A.K., Balametov E.A. Development and İmplementation of 20 kv İntelligent Power Distribution Networks. – International Journal on Technical and Physical Problems of Engineering (IJTPE), 2017, iss. 30, vol. 9, No. 1, pp. 7–11.
8. Тухватуллин М.М. и др. Анализ современных устройств FACTS, используемых для повышения эффективности функционирования электроэнергетических систем России. – Электротехнические системы и комплексы, 2015, № 3 (28), с. 41–46.
9. Баринов В.А., Маневич А.С., Мурачев А.С. Применение в энергосистемах нового класса распределенных сетевых управляемых устройств. – Известия РАН. Энергетика, 2016, № 3, с. 3–14.
10. Belyaev A.N., Izotova K.A., Kashin I.V. Stability of Ultra Long Distance AC Power Transmission Lines with Controlled Shunt Compensation Devices. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, DOI:10.1109/EIConRus.2018.8317163.
11. Pertl M. et al. Transient Stability İmprovement: A Review and Comparison of Conventional and Renewable-Based Techniques for Preventive and Emergency Control. – Electrical Engineering, 2018, 100 (3), DOI:10.1007/s00202-017-0648-6.
12. Martínez E.B., Angeles-Camacho C. Technical Comparison of FACTS Controllers in Parallel Connection. – Journal of Applied Research and Technology, 2017, 15(1), DOI:10.1016/j.jart.2017.01.001.
13. Gandoman F.H. et al. Review of FACTS Technologies and Applications for Power Quality in Smart Grids with Renewable Energy Systems. – Renewable and Sustainable Energy Reviews, 2018, vol. 82, pp.502–514, DOI:10.1016/j.rser.2017.09.062.
14. Katsivelakis M., Bargiotas D., Daskalopulu A. Transient Stability Analysis in Power Systems Integrated with a Doubly-Fed Induction Generator Wind Farm. – 11th International Conference on Information, Intelligence, Systems and Applications, 2020, DOI:10. 1109/IISA50023.2020.9284361.
15. Халилов Э.Д. Моделирование повышения эффективности электрических сетей средствами устройств FACTS. – Энергетика. Известия высших учебных заведений и энергетических объединений СНГ, 2017, т. 60, № 4, с. 341–351.
16. Pasiopoulou I. et al. Effect of Load Modelling on Power Systems Stability Studies. – The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020), 2021, DOI:10.1049/icp.2021.1266.
17. Tina G.M., Licciardello S., Stefanelli D. Strategic Role of New Power Generation Assets for the Security of the Future Italian Power System. – 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 2019, DOI:10.1109/EEEIC.2019.8783381.
#
1. Voropay N.I. Elektrichestvo – in Russ. (Electricity), 2020, No. 7, pp. 12–21.
2. Vanishree J., Ramesh V. Optimization of Size and Cost of Static VAR Compensator using Dragonfly Algorithm for Voltage Profile Improvement in Power Transmission Systems. – International Journal of Renewable Energy Research, 2018, 8(1), pp. 56–66.
3. Merah H. et al. Sizing and Sitting of Static VAR Compensator (SVC) Using Hybrid Optimization of Combined Cuckoo Search (CS) and Antlion Optimization (ALO) Algorithms. – Energies, 2022, 15(13): 4852, DOI:10.3390/en15134852.
4. Rambabu M., Kumar G.V.N., Sivanagaraju S.S. An İntermittent Contingency Approach with Optimal Placement of Static VAR Compensator in a Renewable-İntegrated Power Systems. – International Journal of Ambient Energy, 2019, 42(2), DOI:10.1080/01430750.2019.1611649.
5. Biswas P.P. et al. Optimal Placement and Sizing of FACTS Devices for Optimal Power Flow in a Wind Power İntegrated Electrical Network. – Neural Computing and Applications, 2021, 33 (2), DOI:10. 1007/s00521-020-05453-x.
6. Hashimov A.M., Guliyev H.B., Babayeva A.R. Managing Shunt Reactors in Accordance to Fuzzy Controllers for Stabilization of Voltage in High Tension Tire-Cover. – International Journal on Technical and Physical Problems of Engineering (IJTPE), 2017, ıss. 30, vol. 9, No. 1, pp. 18–-22.
7. Balametov A.B., Salimova A.K., Balametov E.A. Development and İmplementation of 20 kv İntelligent Power Distribution Networks. – International Journal on Technical and Physical Problems of Engineering (IJTPE), 2017, iss. 30, vol. 9, No. 1, pp. 7–11.
8. Tuhvatullin М.М. et al. Elektrotekhnicheskie sistemy i kompleksy – in Russ. (Electrical systems and complexes), 2015, No. 3 (28), pp. 41–46.
9. Barinov V.A., Manevich A.S., Murachev A.S. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy), 2016, No. 3, pp. 3–14.
10. Belyaev A.N., Izotova K.A., Kashin I.V. Stability of Ultra Long Distance AC Power Transmission Lines with Controlled Shunt Compensation Devices. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, DOI:10.1109/EIConRus.2018.8317163.
11. Pertl M. et al. Transient Stability İmprovement: A Review and Comparison of Conventional and Renewable-Based Techniques for Preventive and Emergency Control. – Electrical Engineering, 2018, 100 (3), DOI:10.1007/s00202-017-0648-6.
12. Martínez E.B., Angeles-Camacho C. Technical Comparison of FACTS Controllers in Parallel Connection. – Journal of Applied Research and Technology, 2017, 15(1), DOI:10.1016/j.jart.2017.01.001.
13. Gandoman F.H. et al. Review of FACTS Technologies and Applications for Power Quality in Smart Grids with Renewable Energy Systems. – Renewable and Sustainable Energy Reviews, 2018, vol. 82, pp.502–514, DOI:10.1016/j.rser.2017.09.062.
14. Katsivelakis M., Bargiotas D., Daskalopulu A. Transient Stability Analysis in Power Systems Integrated with a Doubly-Fed Induction Generator Wind Farm. – 11th International Conference on Information, Intelligence, Systems and Applications, 2020, DOI:10. 1109/IISA50023.2020.9284361.
15. Halilov E.D. Energetika. Izvestiya vysshih uchebnyh zavedeniy i energeticheskih ob"edineniy SNG – in Russ. (Energy. Proceedings of Higher Educational Institutions and Energy Associations of the CIS), 2017, vol. 60, No. 4, pp. 341–351.
16. Pasiopoulou I. et al. Effect of Load Modelling on Power Systems Stability Studies. – The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020), 2021, DOI:10.1049/icp.2021.1266.
17. Tina G.M., Licciardello S., Stefanelli D. Strategic Role of New Power Generation Assets for the Security of the Future Italian Power System. – 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 2019, DOI:10.1109/EEEIC.2019.8783381