The Use of Artificial Тhunderstorm Clouds/Cells for Studying Some Problems of Lightning Physics and Lightning Protection
Abstract
The article addresses some topical problems of lightning physics and lightning protection for solving of which new experimental approaches are required. These include lightning initiation processes, lightning discharge main stage development processes, features pertinent to the processes through which lightning hits on-ground facilities and aircraft, and methods for improving their lightning protection. One of such approaches involves the use of artificial thunderstorm clouds/cells and electrical discharges from them for physically modeling the processes through which lightning hits on-ground facilities and aircraft. The article formulates the requirements for experimental complexes aimed at studying the physics of lightning and lightning protection of on-ground facilities and aircraft using artificial thunderstorm clouds/cells. The current state of the problem of producing highly charged aerosol structures (artificial thunderstorm clouds/cells) able to initiate electrical discharges of various types is reviewed. The main characteristics and capabilities of the GROZA (THUNDERSTORM) experimental and measuring system are presented. Conclusions about the prospects of using artificial thunderstorm clouds/cells and electrical discharges from them for physically modeling and studying a number of key problems in the physics of lightning and lightning protection of on-ground facilities and aircraft have been drawn.
References
2. Rakov V.A. Lightning, the Science. Part 2: Current and Electromagnetics. – Электричество, 2021, № 6, с. 4–11.
3. Базелян Э.М. Вопросы практической молниезащиты. М.: ИМАГ, 2015, 208 с.
4. Dwyer J.R., Uman V.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534, pp. 147–241, DOI:10.1016/J.PHYSREP. 2013.09.004.
5. Mazur V.A. Principles of Lightning Physics. Bristol and New York: Myprint, 2016, 184 p., DOI: 10.1088/978-0-7503-1152-6
6. Plumer J.A., Perala R.A. Lightning Protection of Aircraft. Pittsfield: Lightning Technologies Inc., 2014.
7. Rakov V.A., Mareev E.A. Statistical Distribution of Lightning Parameters with Emphasis on Their Extremely High Values. – Электричество, 2021, № 8, с. 4–25.
8. Белова О.С. и др. Идентификация параметров разряда молнии по его воздействию на волоконно-оптические линии связи. – Электричество, 2024, № 2, с. 4–10.
9. Lightning Parameters for Engineering Applications. CIGRE, TB 549, 2013.
10. Rakov V.A. Fundamentals of Lightning. Cambridge, United Kingdom: Cambridge University Press, 2016, 252 p., DOI:10.1017/CBO9781139680370.
11. Petrov N.I., D’Alessandro F. Theoretical Analysis of the Processes Involved in Lightning Attachment to Earthed Structures. – Journal of Physics D: Applied Physics, 2002, vol. 35(14), DOI:10.1088/0022-3727/35/14/321.
12. Cooray V. The Influence of Lightning Conductor Radii on the Attachment of Lightning Flashes. – Electric Power Systems Research, 2017, 153, pp. 138–143, DOI:10.1016/j.epsr.2017.01.002.
13. Lu W. et al. Two Basic Ways of Leader Connecting Behavior During Lightning Attachment Process. – High Voltage, 2016, 1, pp. 11–17, DOI: 10.1049/hve.2016.0002.
14. Gallimberti I. The Mechanism of Long Spark Formation. – Le Journal de Physique Colloques, 1972, vol. 40(C7), pp. 193–250, DOI:10.1051/jphyscol:19797440.
15. Warner T.A. Observations of Simultaneous Upward Lightning Leaders from Multiple Tall Structures. – Atmospheric Research, 2012, vol. 117, pp. 45–54, DOI:10.1016/j.atmosres.2011.07.004.
16. Stolzenburg M. et al. Competing and Cutoff Leaders before “Upward Illumination”-Type Lightning Ground Strokes. – Journal of Geophysical Research Atmospheres, 2013, 118(13), pp. 7182–7198, DOI:10.1002/jgrd.50512.
17. Williams E.R., Cooke C.M., Wright K.A. Electrical Discharge Propagation in and Around Space Charge Clouds. – Journal of Geophysical Research, 1985, vol. 90(D4), pp. 6059–6070.
18. Mazur V. et al. Recoil Leader Formation and Development. – Journal of Electrostatics, 2013, vol. 71(4), pp. 763–768, DOI:10.1016/j.elstat.2013.05.001.
19. Nag A. et al. Lightning Location Systems: Insights on Characteristics and Validation Technique. – Earth and Space Science, AGU Publications, 2015, 2, DOI:10.1002/2014EA000051.
20. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 1. Роль отлипания в снижении критической разрядной напряженности воздуха. – Электричество, 2022, № 11, с. 13–28.
21. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 2. Достримерный этап. – Электричество, 2022, № 12, с. 13–22.
22. Иудин Д.И., Сысоев А.А., Раков В.А. Инициация молнии как следствие естественной эволюции грозового облака. Ч. 3. Стримеры и стримерно-лидерный переход. – Электричество, 2023, № 1, с. 16–27.
23. Petersen D. et al. A Brief Review of the Problem of Lightning Initiation and Hypothesis of Initial Lightning Leader Formation. – Journal of Geophysical Research Atmospheres, 2008, 113(D17), DOI:10.1029/2007JD009036.
24. Cooray V. On the Minimum Length of Leader Channel and the Minimum Volume of Space Charge Concentration Necessary to Initiate Lightning Flashes in Thunderclouds. – Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 136, DOI:10.1016/j.jastp.2015.09.008.
25. Gurevich A.V., Karashtin A. Runaway Breakdown and Hydrometeors in Lightning Initiation. – Physical Review Letters, 2013, vol. 110(18), DOI:10.1103/PhysRevLett.110.185005.
26. Базелян Э.М., Райзер Ю.П. Механизм притяжения молнии и проблема лазерного управления молнией. – Успехи физических наук, 2000, т. 170, № 7, с. 753–769.
27. Apollonov V.V. High Power Lasers and New Applications. – International Journal of Engineering Research and Development, 2012, vol. 11, No, 3, pp. 34–50.
28. Михайловский Ю.П. и др. О методах воздействия на электрические процессы в облаках. – Труды Главной геофизической обсерватории им. А. И. Воейкова, 2021, вып. 602, с. 6–22.
29. Petrov N.I. et al. Study of Effects of Lightning Strikes to an Aircraft. – Recent Advances in Aircraft Technology, 2012, pp. 523–544, DOI:10.5772/36634.
30. Karch C., Heidler F., Paul C. Protection of Aircraft Radomes against Direct Lightning Strikes. – An Overview. Atmosphere 2021, 12, DOI:10.3390/atmos12091141.
31. Vukovic A., Sewell P., Benson T. Impact of In Situ Radome Lightning Diverter Strips on Antenna Performance. – IEEE Transactions on Antennas and Propagation, 2020, vol. 68, iss. 11, pp. 7287–7296, DOI: 10.1109/TAP.2020.2998169.
32. Chen H., Wang F., Xiong X. Plasma Discharge Characteristics of Segmented Diverter Strips Subject to lightning Strike. – Plasma Science and Technology, 2019, vol. 21(2), DOI:10.1088/2058-6272/aaeba9.
33. Гайворонский А.С., Овсянников А.Г. Методы физического моделирования грозопоражаемости наземных объектов. – Труды Первой Российской конференции по молниезащите, 2007, с. 85–90.
34. Темников А.Г. Развитие методов молниезащиты на основе электрических разрядов из искусственных грозовых облаков: дис. … докт. техн. наук. М., 2023, 467 с.
35. Анцупов К.В. и др. Методы получения заряженных аэрозольных образований и их использование. – Известия АН СССР. Энергетика и транспорт, 1990, № 5, с. 78–92.
36. Vonnegut B. et al. Technique for the Introduction into the Atmosphere of High Concentration of Electrically Charged Aerosol Particles. – Journal of Atmospheric and Solar-Terrestrial Physics, 1967, vol. 29, pp. 781–792.
37. Barreto E. Electrical Discharges from and between Clouds of Charged Aerosol. – Journal of Geophysical Research, 1969, vol.74, No. 28, pp. 6911–6924, DOI: 10.1029/jc074i028p07038.
38. Sugimoto T., Tanaka S., Higashiyama Y. Formation of a Charged Droplets Cloud and Corona Discharge between the Cloud and a Grounded Electrode. – IEEE Transactions on Industry Application, 1999, vol. 35, pp. 225–230, DOI: 10.1109/28.740870.
39. Sugimoto T., Kikuchi H., Higashiyama Y. Positive Discharge from a Grounded Electrode Toward Negatively Charged Particles Cloud. – Journal of Electrostatics, 2005, vol. 63, iss. 6-10, pp. 609–614, DOI:10.1016/S0304-3886(01)00049-3.
40. Sugimoto T. et al. Distribution of Electric Field Strength around a Large-Scale Charged Particle Cloud. – IEEE Transactions on Industry Application, 2001, vol. 37(3), pp. 724–729, DOI:10.1109/28.924751.
41. Sugimoto T. et al. Discharge Occurring at a Grounded Electrode Located in a Charged Particle Cloud. – IEEJ Transactions on Fundamentals and Materials, 2000, 120 (7), pp. 761–767, DOI:10.1541/ieejfms1990.120.7_761.
42. Higashiyama Y. et al. Electrical Discharge Occurring between a Negatively Charged Particle Cloud and a Grounded Sphere Electrode. – Journal of Physics: Conference Series, 2008, 142, DOI:10.1088/1742-6596/142/1/012002.
43. Соколова М.В., Темников А.Г., Хренов С.И. 90 лет кафедре «Техника и электрофизика высоких напряжений» НИУ «МЭИ». – Электричество, 2021, № 12, с. 54–62.
44. Кошелев М.А. Разработка метода создания заряженных областей, способных инициировать искровые разряды: дис. … канд. техн. наук. М., 1991, 257 с.
45. Верещагин И.П. и др. Электрический разряд в заряженном аэрозоле. – Известия АН СССР. Энергетика и транспорт, 1989, № 4, с. 100–106.
46. Анцупов К.В. и др. Исследование искровых разрядов из облака заряженных аэрозольных частиц. – Известия АН СССР. Энергетика и транспорт, № 4, 1990, с. 158–162.
47. Андреев М.Г. и др. Экспериментальное исследование зависимости скорости положительного лидера от тока в начальной и сквозной фазах лидерного процесса. – Физика плазмы, 2008, т. 34, № 7, с. 663–669.
48. Сысоев В.С. и др. Исследование параметров встречного лидера и его влияния на молниезащищённость объектов на основе лабораторного крупномасштабного моделирования. – Известия вузов. Радиофизика, 2013, т. LVI, № 11-12, с. 931–938.
49. Kostinskiy A.Yu. et al. Observation of a New Class of Electric Discharges within Artificial Clouds of Charged Water Droplets and Its Implication for Lightning Initiation within Thunderclouds. – Geophysical Research Letters, 2015, 42(19), pp. 8165–8171, DOI:10.1002/2015GL065620.
50. Kostinskiy A.Yu. et al. Observations of the Connection of Positive and Negative Leaders in Meter-Scale Electric Discharges Generated by Clouds of Negatively Charged Water Droplets. – Journal of Geophysical Research Atmospheres, 2016, 121(16), pp. 9756–9766, DOI:10.1002/2016JD025079.
51. Kostinskiy A.Yu. et al. Infrared Images of Bidirectional Leaders Produced by the Cloud of Charged Water Droplets. – Journal of Geophysical Research Atmospheres, 2015, 120(10), DOI:10.1002/2015JD023827.
52. Темников А.Г., Орлов А.В. Определение электрического поля затопленной турбулентной струи заряженного аэрозоля. – Электричество, 1996, № 8, с. 18–25.
53. Temnikov A.G. Using of Artificial Clouds of Charged Water Aerosol for Investigations of Physics of Lightning and Lightning Protection. – IEEE Conference Publications: Lightning Protection, 2012, DOI: 10.1109/ICLP.2012.6344279.
54. Temnikov A.G. Investigation of Peculiarities of Discharge Formation from the System of Artificial Charged Aerosol Clouds of Negative Polarity. – Electric Power System Research, 2014, 113, pp. 3–9, DOI:10.1016/j.epsr.2014.03.025.
55. Temnikov A.G. et al. Peculiarities of the Electric Field Calculation of the Artificial Thunderstorm Cells. –International Journal of Circuits, Systems and Signal Processing. 2018, vol. 12, pp. 305–311.
56. Темников А.Г. и др. Исследование механизмов формирования совместно развивающихся восходящих лидеров как стадии поражения молнией наземных объектов. – Вестник МЭИ, 2015, № 5, с. 58–64.
57. Темников А.Г. и др. Особенности искусственного инициирования молнии «облако-земля» и стимулирования разрядки грозового облака группами модельных гидрометеоров. – Известия РАН. Энергетика, 2019, № 2, c. 90–105.
58. Lysov N. et al. A Laboratory Investigation of the Probable Mechanisms of the Action of an Artificial Thunderstorm Cell on Model Aircraft Radomes. – Atmosphere, 2021, vol. 12, DOI:10.3390/atmos12121637.
#
1. Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2021, No. 5, pp. 4–16.
2. Rakov V.A. Elektrichestvo – in Russ. (Electricity), 2021, No. 6, pp. 4–11.
3. Bazelyan E.M. Voprosy prakticheskoy molniezashchity (Practi-cal Lightning Protection Issues). М.: IМАG, 2015, 208 p.
4. Dwyer J.R., Uman V.A. The Physics of Lightning. – Physics Reports, 2014, vol. 534, pp. 147–241, DOI:10.1016/J.PHYSREP. 2013.09.004.
5. Mazur V.A. Principles of Lightning Physics. Bristol and New York: Myprint, 2016, 184 p., DOI: 10.1088/978-0-7503-1152-6
6. Plumer J.A., Perala R.A. Lightning Protection of Aircraft. Pittsfield: Lightning Technologies Inc., 2014.
7. Rakov V.A., Mareev E.A. Elektrichestvo – in Russ. (Electricity), 2021, No. 8, pp. 4–25.
8. Belova О.S. et al. Elektrichestvo – in Russ. (Electricity), 2024, No. 2, pp. 4–10.
9. Lightning Parameters for Engineering Applications. CIGRE, TB 549, 2013.
10. Rakov V.A. Fundamentals of Lightning. Cambridge, United Kingdom: Cambridge University Press, 2016, 252 p., DOI:10.1017/CBO9781139680370.
11. Petrov N.I., D’Alessandro F. Theoretical Analysis of the Processes Involved in Lightning Attachment to Earthed Structures. – Journal of Physics D: Applied Physics, 2002, vol. 35(14), DOI:10.1088/0022-3727/35/14/321.
12. Cooray V. The Influence of Lightning Conductor Radii on the Attachment of Lightning Flashes. – Electric Power Systems Research, 2017, 153, pp. 138–143, DOI:10.1016/j.epsr.2017.01.002.
13. Lu W. et al. Two Basic Ways of Leader Connecting Behavior During Lightning Attachment Process. – High Voltage, 2016, 1, pp. 11–17, DOI: 10.1049/hve.2016.0002.
14. Gallimberti I. The Mechanism of Long Spark Formation. – Le Journal de Physique Colloques, 1972, vol. 40(C7), pp. 193–250, DOI:10.1051/jphyscol:19797440.
15. Warner T.A. Observations of Simultaneous Upward Lightning Leaders from Multiple Tall Structures. – Atmospheric Research, 2012, vol. 117, pp. 45–54, DOI:10.1016/j.atmosres.2011.07.004.
16. Stolzenburg M. et al. Competing and Cutoff Leaders before “Upward Illumination”-Type Lightning Ground Strokes. – Journal of Geophysical Research Atmospheres, 2013, 118(13), pp. 7182–7198, DOI:10.1002/jgrd.50512.
17. Williams E.R., Cooke C.M., Wright K.A. Electrical Discharge Propagation in and Around Space Charge Clouds. – Journal of Geophysical Research, 1985, vol. 90(D4), pp. 6059–6070.
18. Mazur V. et al. Recoil Leader Formation and Development. – Journal of Electrostatics, 2013, vol. 71(4), pp. 763–768, DOI:10.1016/j.elstat.2013.05.001.
19. Nag A. et al. Lightning Location Systems: Insights on Characteristics and Validation Technique. – Earth and Space Science, AGU Publications, 2015, 2, DOI:10.1002/2014EA000051.
20. Iudin D.I., Syssoev A.A., Rakov V.А. Elektrichestvo – in Russ. (Electricity), 2022, No. 11, pp. 13–28.
21. Iudin D.I., Syssoev A.A., Rakov V.А. Elektrichestvo – in Russ. (Electricity), 2022, No. 12, pp. 13–22.
22. Iudin D.I., Syssoev A.A., Rakov V.А. Elektrichestvo – in Russ. (Electricity), 2023, No. 1, pp. 16–27.
23. Petersen D. et al. A Brief Review of the Problem of Lightning Initiation and Hypothesis of Initial Lightning Leader Formation. – Journal of Geophysical Research Atmospheres, 2008, 113(D17), DOI:10.1029/2007JD009036.
24. Cooray V. On the Minimum Length of Leader Channel and the Minimum Volume of Space Charge Concentration Necessary to Initiate Lightning Flashes in Thunderclouds. – Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 136, DOI:10.1016/j.jastp.2015.09.008.
25. Gurevich A.V., Karashtin A. Runaway Breakdown and Hydrometeors in Lightning Initiation. – Physical Review Letters, 2013, vol. 110(18), DOI:10.1103/PhysRevLett.110.185005.
26. Bazelyan E.M., Rayzer Yu.P. Uspekhi fizicheskih nauk – in Russ. (Achievements of the Physical Sciences), 2000, vol. 170, No. 7, pp. 753–769.
27. Apollonov V.V. High Power Lasers and New Applications. – International Journal of Engineering Research and Development, 2012, vol. 11, No, 3, pp. 34–50.
28. Mihaylovskiy Yu.P. et al. Trudy Glavnoy geofizicheskoy observatorii im. A. I. Voeykova – in Russ. (Proceedings of the Main Geophysical Observatory n.a. A. I. Voeikov), 2021, iss. 602, pp. 6–22.
29. Petrov N.I. et al. Study of Effects of Lightning Strikes to an Aircraft. – Recent Advances in Aircraft Technology, 2012, pp. 523–544, DOI:10.5772/36634.
30. Karch C., Heidler F., Paul C. Protection of Aircraft Radomes against Direct Lightning Strikes. – An Overview. Atmosphere 2021, 12, DOI:10.3390/atmos12091141.
31. Vukovic A., Sewell P., Benson T. Impact of In Situ Radome Lightning Diverter Strips on Antenna Performance. – IEEE Transactions on Antennas and Propagation, 2020, vol. 68, iss. 11, pp. 7287–7296, DOI: 10.1109/TAP.2020.2998169.
32. Chen H., Wang F., Xiong X. Plasma Discharge Characteristics of Segmented Diverter Strips Subject to lightning Strike. – Plasma Science and Technology, 2019, vol. 21(2), DOI:10.1088/2058-6272/aaeba9.
33. Gayvoronskiy A.S., Ovsyannikov A.G. Trudy Pervoy Rossiyskoy konferentsii po molniezashchite – in Russ. (Proceedings of the First Russian Lightning Protection Conference), 2007, pp. 85–90.
34. Temnikov A.G. Razvitie metodov molniezashchity na osnove elektricheskih razryadov iz iskusstvennyh grozovyh oblakov: dis. … dokt. tekhn. nauk (Development of Lightning Protection Methods Based on Electric Discharges from Artificial Thunderclouds: Dis. ... Dr. Sci. (Eng.)). М, 2023, 467 p.
35. Antsupov K.V. et al. Izvestiya AN SSSR. Energetika i transport– in Russ. (News of the USSR Academy of Sciences. Power Engineering and Transport), 1990, No. 5, pp. 78–92.
36. Vonnegut B. et al. Technique for the Introduction into the Atmosphere of High Concentration of Electrically Charged Aerosol Particles. – Journal of Atmospheric and Solar-Terrestrial Physics, 1967, vol. 29, pp. 781–792.
37. Barreto E. Electrical Discharges from and between Clouds of Charged Aerosol. – Journal of Geophysical Research, 1969, vol.74, No. 28, pp. 6911–6924, DOI: 10.1029/jc074i028p07038.
38. Sugimoto T., Tanaka S., Higashiyama Y. Formation of a Charged Droplets Cloud and Corona Discharge between the Cloud and a Grounded Electrode. – IEEE Transactions on Industry Application, 1999, vol. 35, pp. 225–230, DOI: 10.1109/28.740870.
39. Sugimoto T., Kikuchi H., Higashiyama Y. Positive Discharge from a Grounded Electrode Toward Negatively Charged Particles Cloud. – Journal of Electrostatics, 2005, vol. 63, iss. 6-10, pp. 609–614, DOI:10.1016/S0304-3886(01)00049-3.
40. Sugimoto T. et al. Distribution of Electric Field Strength around a Large-Scale Charged Particle Cloud. – IEEE Transactions on Industry Application, 2001, vol. 37(3), pp. 724–729, DOI:10.1109/28.924751.
41. Sugimoto T. et al. Discharge Occurring at a Grounded Electrode Located in a Charged Particle Cloud. – IEEJ Transactions on Fundamentals and Materials, 2000, 120 (7), pp. 761–767, DOI:10.1541/ieejfms1990.120.7_761.
42. Higashiyama Y. et al. Electrical Discharge Occurring between a Negatively Charged Particle Cloud and a Grounded Sphere Electrode. – Journal of Physics: Conference Series, 2008, 142, DOI:10.1088/ 1742-6596/142/1/012002.
43. Sokolova M.V., Temnikov A.G., Hrenov S.I. Elektrichestvo – in Russ. (Electricity), 2021, No. 12, pp. 54–62.
44. Koshelev M.A. Razrabotka metoda sozdaniya zaryazhennyh oblastey, sposobnyh initsiirovat' iskrovye razryady: dis. … kand. tekhn. nauk (Development of a Method for Creating Charged Regions Capable of Initiating Spark Discharges: Dis. ... Cand. Sci. (Eng.)). М., 1991, 257 p.
45. Vereshchagin I.P. et al. Izvestiya AN SSSR. Energetika i transport– in Russ. (News of the USSR Academy of Sciences. Power Engineering and Transport), 1989, № 4, с. 100–106.
46. Antsupov K.V. et al. Izvestiya AN SSSR. Energetika i transport– in Russ. (News of the USSR Academy of Sciences. Power Engineering and Transport), No. 4, 1990, pp. 158–162.
47. Andreev M.G. et al. Fizika plazmy – in Russ. (Plasma Physics), 2008, vol. 34, No. 7, pp. 663–669.
48. Sysoev V.S. et al. Izvestiya vuzov. Radiofizika – in Russ. (News of Universities. Radiophysics), 2013, vol. LVI, No. 11-12, pp. 931–938.
49. Kostinskiy A.Yu. et al. Observation of a New Class of Electric Discharges within Artificial Clouds of Charged Water Droplets and Its Implication for Lightning Initiation within Thunderclouds. – Geophysical Research Letters, 2015, 42(19), pp. 8165–8171, DOI:10.1002/2015GL065620.
50. Kostinskiy A.Yu. et al. Observations of the Connection of Positive and Negative Leaders in Meter-Scale Electric Discharges Generated by Clouds of Negatively Charged Water Droplets. – Journal of Geophysical Research Atmospheres, 2016, 121(16), pp. 9756–9766, DOI:10.1002/2016JD025079.
51. Kostinskiy A.Yu. et al. Infrared Images of Bidirectional Leaders Produced by the Cloud of Charged Water Droplets. – Journal of Geophysical Research Atmospheres, 2015, 120(10), DOI:10.1002/2015JD023827.
52. Temnikov A.G., Orlov A.V. Elektrichestvo – in Russ. (Electricity), 1996, No. 8, pp. 18–25.
53. Temnikov A.G. Using of Artificial Clouds of Charged Water Aerosol for Investigations of Physics of Lightning and Lightning Protection. – IEEE Conference Publications: Lightning Protection, 2012, DOI: 10.1109/ICLP.2012.6344279.
54. Temnikov A.G. Investigation of Peculiarities of Discharge Formation from the System of Artificial Charged Aerosol Clouds of Negative Polarity. – Electric Power System Research, 2014, 113, pp. 3–9, DOI:10.1016/j.epsr.2014.03.025.
55. Temnikov A.G. et al. Peculiarities of the Electric Field Calculation of the Artificial Thunderstorm Cells. –International Journal of Circuits, Systems and Signal Processing. 2018, vol. 12, pp. 305–311.
56. Temnikov A.G. et al. Vestnik MEI – in Russ. (Bulletin of the MPEI), 2015, No. 5, pp. 58–64.
57. Temnikov A.G. et al. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Power Engineering), 2019, No. 2, pp. 90–105.
58. Lysov N. et al. A Laboratory Investigation of the Probable Mechanisms of the Action of an Artificial Thunderstorm Cell on Model Aircraft Radomes. – Atmosphere, 2021, vol. 12, DOI:10.3390/atmos12121637