Analysis of Specific Electrical Loads of Cottage Settlements

  • Yuriy I. SOLUYANOV
  • Aleksandr I. FEDOTOV
  • Azat R. AKHMETSHIN
  • Natal'ya V. CHERNOVA
Keywords: individual housing construction facilities, specific electrical loads, power consumption, power supply, design of electrical networks

Abstract

During the construction of cottage settlements, significant costs are incurred for external and internal power supply systems. At the same time, regulatory data on the specific electrical loads of individual housing construction facilities are either missing or do not have sufficient experimental justification. The article addresses the problem of developing scientifically grounded values of specific electrical loads in cottage settlements. For a number of cottage settlements in urban and rural areas of the Republic of Tatarstan, the power consumption by individual housing construction facilities in summer and winter periods has been studied. A statistical analysis of power consumption data has shown that 15% of the total number of cottages are characterized by atypical electrical loads of individual housing construction facilities and increase the design capacity, which must be taken into account in designing the power supply of such facilities. The average value of the maximum half-hour electrical load of 85% of cottages in settlements is an important characteristic to be used for specifying the loads of substations and the capacity of power transformers. It has been determined that the average electrical loads for individual housing construction facilities in rural areas are higher than in urban areas. By using the obtained curves of specific design electrical loads and load coincidence factors it is possible to develop a regulatory document for designing the electric networks of cottage settlements.

Author Biographies

Yuriy I. SOLUYANOV

(Association "Roselectromontazh", Kazan, Russia) – President, Dr. Sci. (Eng.), Professor.

Aleksandr I. FEDOTOV

(Kazan State Power Engineering University, Kazan, Russia) – Professor of the Power Plants n.a. V.K. Shibanov Dept., Dr. Sci. (Eng.), Professor.

Azat R. AKHMETSHIN

(Kazan State Power Engineering University, Kazan, Russia) – Docent of the Power Engineering Dept., Cand. Sci. (Eng.).

Natal'ya V. CHERNOVA

(Association "Roselectromontazh", Kazan, Russia) – Leading Researcher, Cand. Sci. (Eng.).

References

1. Загородная аналитика [Электрон. ресурс], URL: https://www.cian.ru/stati-dolja-izhs-v-obschem-obeme-vvoda-zhilja-vyrosla-do-58-332131/ (дата обращения 10.01.2024).
2. Ввод жилья топчется на месте [Электрон. ресурс], URL: https://www.kommersant.ru/doc/6209834 (дата обращения 10.01.2024).
3. Надтока И.И., Павлов А.В. Повышение точности расчёта электрических нагрузок многоквартирных домов с электроплитами. – Известия высших учебных заведений. Северо-Кавказский регион. Технические науки, 2015, № 2(183), с. 45–48.
4. Надтока И.И. и др. Влияние длительности интервала измерений потребления электроэнергии на точность определения максимальной нагрузки по нагреву. – Промышленная энергетика, 2022, № 12, с. 21–25.
5. Надтока И.И. и др. Анализ основных закономерностей в электропотреблении жилой части многоквартирных домов в Московском регионе. – Промышленная энергетика, 2023, № 11, с. 21–27.
6. Vyalkova S., Nadtoka I., Kornyukova O. Application of Neural Networks to Predict Power Consumption of a Megapolis. – International Conference on Industrial Engineering, Applications and Manufacturing, 2023, pp. 949–953, DOI: 10.1109/ICIEAM57311.2023.10139236.
7. Солуянов Ю.И. и др. Актуализация удельных электрических нагрузок многоквартирных жилых домов в Республике Татарстан. – Электричество, 2021, № 6, с. 62–71.
8. Солуянов Ю.И. и др. Актуализация удельных электрических нагрузок многоквартирных жилых домов Москвы и Московской области. – Электричество, 2023, № 7, с. 52–65.
9. Солуянов Ю.И. и др. Результаты статистического анализа электрических нагрузок многоквартирных домов г. Москвы. – Электрические станции, 2023, № 2(1099), с. 22–28.
10. Морсин И.А., Шведов Г.В. Формирование электрических нагрузок на шинах вводного распределительного устройства современных многоквартирных домов. – Промышленная энергетика, 2023, № 7, c. 22–29.
11. Соловьева А.С., Шведов Г.В. Сравнительный анализ зимних и летних графиков электрической нагрузки рабочих и выходных дней многоквартирных домов с электроплитами в системах электроснабжения крупных городов. – Вестник Южно-Уральского государственного университета. Серия: Энергетика, 2023, т. 23, № 1, с. 27–37.
12. Таваров С.Ш. и др. Метод прогнозирования и расчёта электрической нагрузки коммунально-бытовых потребителей в условиях неопределённости. – iPolytech Journal, 2023, т. 27, № 3, с. 565–573.
13. РД 34.20.185-94. Инструкция по проектированию городских электрических сетей. М.: Энергоатомиздат, 1999, 31 с.
14. Майоров А.В. Развитие системы оперативно-технологического управления электросетевым комплексом в рамках концепции цифровой трансформации 2030. – Электроэнергия. Передача и распределение, 2019, № S2 (13), с. 2–7.
15. Carroll P. et al. Household Classification Using Smart Meter Data. – Journal of Official Statistics, 2018, vol. 34, No. 1, DOI: 10.1515/jos-2018-0001.
16. Khomichev V.A., Shvedov G.V. Probabilistic-Statistical Analysis of the Maximum Electrical Load of Apartment. – 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering, 2023, DOI: 10.1109/REEPE57272.2023.10086879.
17. Proedrou A. Comprehensive Review of Residential Electricity Load Profile Models. – IEEE Access, 2021, vol. 9, pp. 12114–12133, DOI: 10.1109/ACCESS.2021.3050074.
18. Жилкина Ю.В. Концепции интернета вещей как способ мотивации к энергосбережению. – Электрические станции, 2020, № 2 (1063), с. 23–26.
19. СП 256.1325800.2016. Электроустановки жилых и общественных зданий. Правила проектирования и монтажа. М.: ФГБУ «РСТ», 2022, 168 с.
20. Солуянов Ю.И. и др. Анализ фактических электрических нагрузок объектов индивидуального жилищного строительства. – Электроэнергия. Передача и распределение, 2021, № 5(68), с. 60–65.
21. James G. et al. An Introduction to Statistical Learning with. – Applications in R, 2nd ed. Cham, Springer, 2021, 612 р.
22. Гореева Н.М., Демидова Л.Н. Статистика. М.: Прометей, 2019, 496 c.
#
1. Zagorodnaya analitika (Suburban Analytics) [Electron. resource], URL: https://www.cian.ru/stati-dolja-izhs-v-obschem-obeme-vvoda- zhilja-vyrosla-do-58-332131/ (Date of appeal 10.01.2024).
2. Vvod zhil'ya topchetsya na meste (Housing Commissioning is Stalling) [Electron. resource], URL: https://www.kommersant.ru/doc/6209834 (Date of appeal 10.01.2024).
3. Nadtoka I.I., Pavlov A.V. Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskie nauki – in Russ. (Proceedings of universities. North Caucasian region. Technical science), 2015, No. 2(183), pp. 45–48.
4. Nadtoka I.I. et al. Promyshlennaya energetika – in Russ. (In-dustrial Power Engineering), 2022, No. 12, pp. 21–25.
5. Nadtoka I.I. et al. Promyshlennaya energetika – in Russ. (In-dustrial Power Engineering), 2023, No. 11, pp. 21–27.
6. Vyalkova S., Nadtoka I., Kornyukova O. Application of Neural Networks to Predict Power Consumption of a Megapolis. – International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2023, 2023, pp. 949–953, DOI: 10.1109/ICIEAM57311.2023.10139236.
7. Soluyanov Yu.I. et al. Elektrichestvo – in Russ. (Electricity), 2021, No. 6, pp. 62–71.
8. Soluyanov Yu.I. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 7, pp. 52–65.
9. Soluyanov Yu.I. et al. Elektricheskie stantsii – in Russ. (Power Plants), 2023, No. 2(1099), pp. 22–28.
10. Morsin I.A., Shvedov G.V. Promyshlennaya energetika – in Russ. (Industrial Power Engineering), 2023, No. 7, pp. 22–29.
11. Solov'eva A.S. Shvedov G.V. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika – in Russ. (Bulletin of South Ural State University. Series: Power Engineering), 2023, vol. 23, No. 1, pp. 27–37.
12. Tavarov S.Sh. et al. iPolytech Journal, 2023, vol. 27, No. 3, pp. 565–573.
13. RD 34.20.185-94. Instruktsiya po proektirovaniyu gorodskih elektricheskih setey (Instructions for the Design of Urban Electric Networks). M.: Energoatomizdat, 1999, 31 p.
14. Majorov А.V. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electricity. Transmission and Distribution), 2019, No. S2 (13), pp. 2–7.
15. Carroll P. et al. Household Classification Using Smart Meter Data. – Journal of Official Statistics, 2018, vol. 34, No. 1, DOI: 10.1515/jos-2018-0001.
16. Khomichev V.A., Shvedov G.V. Probabilistic-Statistical Analysis of the Maximum Electrical Load of Apartment. – 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering, 2022, DOI: 10.1109/REEPE57272.2023.10086879.
17. Proedrou A. Comprehensive Review of Residential Electricity Load Profile Models. – IEEE Access, 2021, vol. 9, pp. 12114–12133, DOI: 10.1109/ACCESS.2021.3050074.
18. Zhilkina Yu.V. Elektricheskie stantsii – in Russ. (Power Plants), 2020, No. 2 (1063), pp. 23–26.
19. SP 256.1325800.2016. Elektroustanovki zhilyh i obshchestvennyh zdaniy. Pravila proektirovaniya i montazha (Electrical Installations of Residential and Public Buildings. Design and Installation Rules). М.: FGBU «RSТ», 2022, 168 p.
20. Soluyanov Yu.I. et al. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electricity. Transmission and Distribution), 2021, No. 5(68), pp. 60–65.
21. James G. et al. An Introduction to Statistical Learning with. – Applications in R, 2nd ed. Cham, Springer, 2021, 612 р.
22. Goreeva N.M., Demidova L.N. Statistika (Statistics). М.: Pro-metey, 2019, 496 p
Published
2024-02-29
Section
Article