Calculating the Stoletov Curve of Ferromagnetic Material under Anhysteretic Magnetization from the Limiting Magnetic Hysteresis Loop Parameters
Abstract
A formula has been developed using which it is possible to construct the dependence of the magnetic susceptibility χ on the magnetic field strength H in a ferromagnetic material under hysteresis-free magnetization and analyze it in different H variation ranges for any materials, the results of measuring the coercive force Hc, magnetization Ms at technical saturation, and residual magnetization Mr of which are given in the reference literature. Taking into account the inevitable measurement errors of the χ values at the experimental points on the Stoletov curve and measurement errors according to the standard methods used to calculate data on Hc, Mr and Ms of the material, the obtained result makes it possible to replace the time-consuming measurements of the Stoletov curves of materials with hysteresis-free magnetization by calculation using the developed formula. The application of the formula is illustrated by analyzing the effect the tempering temperature after quenching has on the Stoletov curves of steel 30 with hysteresis-free magnetization. The Stoletov curves of this steel obtained under switching and hysteresis-free magnetization are compared with each other. The calculated anhysteretic magnetization curve of steel 30 is compared with its measured maximum and initial magnetic susceptibilities. It has been shown from the comparison results that hysteresis-free magnetization increases the maximum magnetic susceptibility of steel by 3.25–9.35 times and increases its initial magnetic susceptibility by 1.13–2.04 orders of magnitude.
References
2. ГОСТ 8.377–80. Материалы магнитомягкие. Методика выполнения измерений при определении статических магнитных характеристик. М.: Изд. стандартов, 1986, 21 с.
3. Чернышев Е.Т. и др. Магнитные измерения. М.: Издательство стандартов, 1969, 248 с.
4. Сандомирский С.Г. Повышение структурной чувствительности остаточной намагниченности и коэрцитивной силы сталей. – Дефектоскопия, 2023, № 8, с. 62–64.
5. Михеев М.Н., Морозова В.М. Магнитные и электрические свойства стали после различных видов термообработки. М.: ОНТИ по приборостроению ЦНИИКА, 1964, 46 с.
6. Морозова В.М., Михеев М.Н. Магнитные и электрические свойства сталей после различных термических обработок. – Труды Института физики металлов УфАН СССР, Свердловск, 1965, вып. 24, с. 3–25.
7. Морозова В.М., Михеев М.Н. Магнитные и электрические свойства закаленных и отпущенных углеродистых сталей. – Труды Института физики металлов УфАН СССР, Свердловск, 1965, вып. 24, с. 26–35.
8. Костин В.Н., Сомова В.М., Царькова Т.П. Магнитные свойства термообработанных сталей после динамического и статического размагничивания. – Дефектоскопия, 2008, № 10, с. 43–54.
9. Бида Г.В., Ничипурук А.П. Магнитные свойства термообработанных сталей. Екатеринбург: УрО РАН, 2005, 218 с.
10. Белов Н.Я. и др. Магнитные и электрические свойства конструкционных и низколегированных сталей. Л.: Ленинградский дом научно-технической пропаганды, 1969, 36 с.
11. Тикадзуми С. Физика ферромагнетизма. Магнитные характеристики и практические применения. М.: Мир, 1987, 419 с.
12. Сандомирский С.Г. Расчет кривой Столетова конструкционных сталей по параметрам предельной петли магнитного гистерезиса. – Электричество, 2022, № 1, с. 18–23.
13. Бозорт Р. Ферромагнетизм. М.: Изд-во иностранной литературы, 1956, 784 с.
14. Поливанов К.М. Ферромагнетики. Основы теории практического применения. М.-Л.: Государственное энергетическое издательство, 1957, 256 с.
15. Янус Р.И. Намагничивания кривые. – Физический энциклопедический словарь. Т. 3. М.: Советская энциклопедия, 1963, с. 354–355.
16. Silveyra J.M., Conde Garrido J.M. On the Anhysteretic Magnetization of Soft Magnetic Materials. – AIP Advances, 2022, vol. 12 (3), DOI: 10.1063/9.0000328.
17. Szewczyk R. Validation of the Anhysteretic Magnetization Model for Soft Magnetic Materials with Perpendicular Anisotropy. – Materials, 2014, vol. 7(7), pp. 5109–5116, DOI:10.3390/ma7075109.
18. Szewczyk R. Assessment of Uncertainty of Determination of Parameters of Jiles-Atherton Model of Hysteresis Loops of Isotropic Materials. – Przegląd Elektrotechniczny, 2016, No. 1, рp. 164–165, DOI: 10.15199/48.2016.11.40.
19. Nowicki M. Anhysteretic Magnetization Measurement Methods for Soft Magnetic Materials. – Materials, 2018, vol. 11 (10), DOI: 10.3390/ma11102021.
20. Pearson J., Squire P.T., Atkinson D. Which Anhysteretic Magnetization Curve? – IEEE Transactions on Magnetics, 1997, vol. 33, pp. 3970–3972, DOI: 10.1109/20.619632.
21. Silveyra J.M., Conde Garrido J.M. On the Modelling of the Anhysteretic Magnetization of Homogeneous Soft Magnetic Materials. – Journal of Magnetism and Magnetic Materials, 2021, 540, DOI: 10.1016/j.jmmm.2021.168430.
22. Мельгуй М.А. Многопараметровые методы магнитной структуроскопии и приборы для их реализации (обзор). Ч.1. Многопараметровая магнитная структуроскопия с использованием параметров петли гистерезиса, измеряемых в замкнутой магнитной цепи электромагнит–изделие. – Дефектоскопия, 2015, № 2, c. 27–34.
23. Волчков С.О. и др. Автоматизированный измерительный комплекс магнитоимпедансной спектроскопии. – Дефектоскопия, 2016, № 11, c. 39–45.
24. Шевцов Д.А. и др. Измерительный комплекс для регистрации петель гистерезиса ферромагнитных материалов. – Электротехника, 2022, № 1, c. 12–16.
25. Pat. US8274278B1. Noncontact Anhysteric Curve Plotter and Statc Feld to Time-Varying Hysteressgraph with Integrated Temperature Chamber / J. Walker, S. E. Saddow, 2012.
26. Rao D.K., Kuptsov V. Effective Use of Magnetization Data in the Design of Electric Machines with Overfluxed Regions. – IEEE Transactions on Magnetics, 2015, 51, 6100709, DOI: 10.1109/TMAG.2015.2397398.
27. Jiles D.C., Atherton D. Ferromagnetic Hysteresis. – IEEE Transactions on Magnetics, 1983, vol. 19, pp. 2183–2185, DOI: 10.1109/TMAG.1983.1062594.
28. Kokornaczyk E., Gutowski M.W. Anhysteretic Functions for the Jiles–Atherton Model. – IEEE Transactions on Magnetics, 2015, vol. 51 (2), DOI: 10.1109/TMAG.2014.2354315.
29. Jiles D.C., Kiarie W. An Integrated Model of Magnetic Hysteresis, the Magnetomechanical Effect, and the Barkhausen Effect. – IEEE Transactions on Magnetics, 2021, vol. 57 (2), DOI: 10.1109/TMAG.2020.3034208.
30. Сташков А.Н. и др. Магнитный метод определения количества остаточного аустенита в мартенситно-стареющих сталях. – Дефектоскопия, 2011, № 12, c. 36–42.
31. Yamazaki K. et al. Iron Loss Analysis of Permanent-Magnet Machines by Considering Hysteresis Loops Affected by Multi-Axial Stress. – IEEE Transactions on Magnetics, 2019, vol. 56, 7503004, DOI: 10.1109/TMAG.2019.2950727.
32. Upadhaya B. et al. A Constraint-Based Optimization Technique for Estimating Physical Parameters of Jiles–Atherton Hysteresis Model. – COMPEL, 2020, vol. 39 (6), pp. 1281–1298, DOI: 10.1108/COMPEL-08-2019-0332.
33. Зацепин Н.Н. Аналитическая функция, описывающая ход симметричной петли магнитного гистерезиса. – Весці нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук, 1973, № 4, с. 29–31.
34. Зацепин Н.Н. Метод высших гармоник в неразрушающем контроле. Минск: Наука и техника, 1980, 168 с.
35. Сандомирский С.Г. Определение безгистерезисной кривой намагничивания ферромагнитного материала по параметрам предельной петли его магнитного гистерезиса. – Электротехника, 2023, № 10, с. 55–60.
36. Янус Р.И. Магнитная дефектоскопия. М.-Л.: Гостехиздат, 1946, 171 с.
37. Сандомирский С.Г. Анализ структурной и фазовой чувствительности максимальной дифференциальной магнитной восприимчивости сталей. – Металлы, 2016, № 4, с. 45–51.
38. Сандомирский С.Г. Оценочный расчет магнитного поля, при котором магнитная проницаемость сталей достигает максимума. – Электричество, 2012, № 7, с. 63–68.
#
1. GOST 19693–74. Materialy magnitnye. Terminy i opredeleniya (Magnetic Materials. Terms and Definitions). М.: Izdatel'stvo standartov, 1974, 32 p.
2. GOST 8.377–80. Materialy magnitomyagkie. Metodika vypolneniya izmerenij pri opredelenii staticheskih magnitnyh harakteristik (Magnetically Soft Materials. Measurement Procedure for Determining the Static Magnetic Characteristics). М.: Izdatel'stvo standartov, 1986, 21 p.
3. Chernyshev E.T. et al. Magnitnye izmereniya (Magnetic Measurements). М.: Izdatel'stvo standartov, 1969, 248 p.
4. Sandomirskiy S.G. Defektoskopiya – in Russ. (Nondestructive Testing), 2023, No. 8, pp. 62–64.
5. Miheev M.N., Morozova V.M. Magnitnye i elektricheskie svoystva stali posle razlichnyh vidov termoobrabotki (Magnetic and Electrical Properties of Steel After Various Heat Treatments). М.: ONTI po priborostroeniyu CNIIKA, 1964, 46 p.
6. Morozova V.M., Miheev M.N. Trudy Instituta fiziki metallov UfAN SSSR – in Russ. (Proceedings of the Institute of Metal Physics of the UfAN of the USSR), 1965, No. 24, pp. 3–25.
7. Morozova V.M., Miheev M.N. Trudy Instituta fiziki metallov UfAN SSSR – in Russ. (Proceedings of the Institute of Metal Physics of the UfAN of the USSR), 1965, No. 24, pp. 26–35.
8. Kostin V.N., Somova V.M., Tsar'kova T.P. Defektoskopiya – in Russ. (Defectoscopy), 2008, No. 10, pp. 43–54.
9. Bida G.V., Nichipuruk A.P. Magnitnye svoystva termo-obrabotannyh staley (Magnetic Properties of Heat-Treated Steels). Ekaterinburg: UrO RAN, 2005, 218 p.
10. Belov N.Ya. et al. Magnitnye i elektricheskie svoystva konstruktsionnyh i nizkolegirovannyh staley (Magnetic and Electrical Properties of Structural and Low-Alloy Steels). L.: Leningradskiy dom nauchno-tekhnicheskoy propagandy, 1969, 36 p.
11. Tikadzumi S. Fizika ferromagnetizma. Magnitnye harakteristiki i prakticheskie primeneniya (Physics of Ferromagnetism. Magnetic Characteristics and Practical Applications). М.: Mir, 1987, 419 p.
12. Sandomirskiy S.G. Elektrichestvo – in Russ. (Electricity), 2022, No. 1, pp. 18–23.
13. Bozort R. Ferromagnetizm (Ferromagnetism). M.: Izd-vo inostrannoy literatury, 1956, 784 p.
14. Polivanov K.M. Ferromagnetiki. Osnovy teorii prakticheskogo primeneniya (Ferromagnets. Fundamentals of the Theory of Practical Application). M.-L.: Gosudarstvennoe energeticheskoe izdatel'stvo, 1957, 256 p.
15. Yanus R.I. Fizicheskiy entsiklopedicheskiy slovar' (Physical Encyclopedic Dictionary). Vol. 3. М.: Sovetskaya entsiklopediya, 1963, pp. 354–355.
16. Silveyra J.M., Conde Garrido J.M. On the Anhysteretic Magnetization of Soft Magnetic Materials. – AIP Advances, 2022, vol. 12 (3), DOI: 10.1063/9.0000328.
17. Szewczyk R. Validation of the Anhysteretic Magnetization Model for Soft Magnetic Materials with Perpendicular Anisotropy. – Materials, 2014, vol. 7(7), pp. 5109–5116, DOI:10.3390/ma7075109.
18. Szewczyk R. Assessment of Uncertainty of Determination of Parameters of Jiles-Atherton Model of Hysteresis Loops of Isotropic Materials. – Przegląd Elektrotechniczny, 2016, No. 1, рp. 164–165, DOI: 10.15199/48.2016.11.40.
19. Nowicki M. Anhysteretic Magnetization Measurement Methods for Soft Magnetic Materials. – Materials, 2018, vol. 11 (10), DOI: 10.3390/ma11102021.
20. Pearson J., Squire P.T., Atkinson D. Which Anhysteretic Magnetization Curve? – IEEE Transactions on Magnetics, 1997, vol. 33, pp. 3970–3972, DOI: 10.1109/20.619632.
21. Silveyra J.M., Conde Garrido J.M. On the Modelling of the Anhysteretic Magnetization of Homogeneous Soft Magnetic Materials. – Journal of Magnetism and Magnetic Materials, 2021, 540, DOI: 10.1016/j.jmmm.2021.168430.
22. Melguy M.A. Defektoskopiya – in Russ. (Nondestructive Testing), 2015, No. 2, pp. 27–34.
23. Volchkov S.О. et al. Defektoskopiya – in Russ. (Nondestructive Testing), 2016, No. 11, pp. 39–45.
24. Shevtsov D.А. et al. Elektrotekhnika – in Russ. (Electrical Engineering), 2022, No. 1, pp. 12–16.
25. Pat. US8274278B1. Noncontact Anhysteric Curve Plotter and Statc Feld to Time-Varying Hysteressgraph with Integrated Temperature Chamber / J. Walker, S. E. Saddow, 2012.
26. Rao D.K., Kuptsov V. Effective Use of Magnetization Data in the Design of Electric Machines with Overfluxed Regions. – IEEE Transactions on Magnetics, 2015, 51, 6100709, DOI: 10.1109/TMAG.2015.2397398.
27. Jiles D.C., Atherton D. Ferromagnetic Hysteresis. – IEEE Transactions on Magnetics, 1983, vol. 19, pp. 2183–2185, DOI: 10.1109/TMAG.1983.1062594.
28. Kokornaczyk E., Gutowski M.W. Anhysteretic Functions for the Jiles–Atherton Model. – IEEE Transactions on Magnetics, 2015, vol. 51 (2), DOI: 10.1109/TMAG.2014.2354315.
29. Jiles D.C., Kiarie W. An Integrated Model of Magnetic Hysteresis, the Magnetomechanical Effect, and the Barkhausen Effect. – IEEE Transactions on Magnetics, 2021, vol. 57 (2), DOI: 10.1109/TMAG.2020.3034208.
30. Stashkov А.N. et al. Defektoskopiya – in Russ. (Nondestructive Testing), 2011, No. 12, pp. 36–42.
31. Yamazaki K. et al. Iron Loss Analysis of Permanent-Magnet Machines by Considering Hysteresis Loops Affected by Multi-Axial Stress. – IEEE Transactions on Magnetics, 2019, vol. 56, 7503004, DOI: 10.1109/TMAG.2019.2950727.
32. Upadhaya B. et al. A Constraint-Based Optimization Technique for Estimating Physical Parameters of Jiles–Atherton Hysteresis Model. – COMPEL, 2020, vol. 39 (6), pp. 1281–1298, DOI: 10.1108/COMPEL-08-2019-0332.
33. Zatsepin N.N. Vesti Natsional'noy akademii nauk Belarusi. Seriya fiziko-tekhnicheskih nauk – in Russ. (News of the National Academy of Sciences of Belarus. Series of Physical and Technical Sciences), 1973, No. 4, pp. 29–31.
34. Zatsepin N.N. Metod vysshih garmonik v nerazrushayushchem kontrole (The Method of Higher Harmonics in Non-Destructive Testing). Minsk: Nauka i tekhnika, 1980, 168 p.
35. Sandomirskiy S.G. Elektrotekhnika – in Russ. (Electrical Engineering), 2023, No. 10, pp. 55–60.
36. Yanus R.I. Magnitnaya defektoskopiya (Magnetic Flaw Detection). M.-L.: Gostekhizdat, 1946, 171 p.
37. Sandomirskiy S.G. Metally – in Russ. (Metals), 2016, No. 4, pp. 45–51.
38. Sandomirskiy S.G. Elektrichestvo – in Russ. (Electricity), 2012, No. 7, pp. 63–68