An Analytical Model of Lithium-ion Battery Voltage Dynamics
Abstract
The development of an analytical mathematical model of the lithium-ion battery voltage dynamics is considered. The proposed model differs from the well-known Shepherd model by taking into account the electrode polarization processes at various degrees of battery discharge, as well as taking into account the potential differences of electrode double layers, which helps improve its accuracy and adequacy. That is, the model takes into consideration the initial charge of the double layers and the membrane initial polarization, which differ from their equilibrium values. The proposed model is obtained by numerically and analytically converting the equations describing the dynamics of processes in lithium-ion batteries obtained by the method of mathematically prototyping energy processes proposed earlier by the authors. This method is essentially a unified approach to constructing correct (i.e., not contradicting the laws of physics) models representing the dynamics of physical and chemical processes of various natures. However, the lithium–ion battery model proposed in this article is valid only for certain assumptions, namely, at room ambient temperature and for a constant current discharge mode from any initial electrolyte polarization state. The proposed model can be used as a basis for developing digital twins of lithium-ion batteries designed to diagnose and predict the condition of lithium-ion batteries operating under normal climatic conditions in a constant current discharge mode.
References
2. Nuzzo P. et al. A Contract-Based Methodology for Aircraft Electric Power System Desig. – IEEE Access, 2014, vol. 2., pp. 125–149, DOI:10.1109/ACCESS.2013.2295764.
3. Buticchi G., Costa L., Liserre M. Improving System Efficiency for the More Electric Aircraft: A Look at DC/DC Converters for the Avionic Onboard DC Microgrid. – IEEE Industrial Electronics Magazine, 2017, 11(3), pp. 26–36, DOI:10.1109/MIE.2017.2723911.
4. Иванов В.В., Мараховский И.В., Кравченко С.В. Формирование требований к авиационным литий-ионным аккумуляторным батареям. – Научные чтения по авиации, посвященные памяти Н.Е. Жуковского, 2013, № 1, с. 325–329.
5. Tariq M. et al. Reliability, Dead-Time, and Feasibility Analysis of a Novel Modular Tankless ZCS Inverter for More Electric Aircraft. – IEEE Transactions on Transportation Electrification, 2017, 3(4), pp. 843–854, DOI:10.1109/TTE.2017.2704283.
6. Тюляев М.Л. и др. Системы электроснабжения летательных аппаратов. М.: ВУНЦ ВВС «ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина», 2010, 427 с.
7. Борисов П.В. и др. Исследование характеристик литий-ионной аккумуляторной батареи. – Известия Петербургского университета путей сообщения, 2023, т. 20, вып. 1, с. 207–221.
8. Хандорин М.М., Букреев В.Г. Оценка остаточной емкости литий-ионной батареи космического аппарата без использования датчика тока. – Известия высших учебных заведений. Приборостроение, 2021, т. 64, № 8, с. 649–655.
9. Колосницын Д.В. и др. Моделирование и оценка зарядового состояния литий-серного аккумулятора с помощью нейронно-нечёткой сети. – Электрохимическая энергетика, 2021, т. 21, № 2, с. 96–107.
10. Smith K., Wang C.-Y. Solid-State Diffusion Limitations on Pulse Operation of a Lithium-Ion Cell for Hybrid Electric Vehicles. – Journal of Power Sources, 2006, vol. 161, pp. 628–639, DOI:10.1016/j.jpowsour.2006.03.050.
11. Старостин И.Е., Халютин С.П. Виды и формы представления основных уравнений метода математического прототипирования энергетических процессов. – Электропитание, 2022, № 4, с. 4–14.
12. Starostin I.E., Khalyutin S.P., Druzhinin A.A. Vibration Analysis Based on the Method of Mathematical Prototyping of Energy Processes. – International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM 2023, 2023, pp. 1650–1656, DOI: 10.1109/EDM58354.2023.10225170.
13. Сердечный Д.В., Томашевский Ю.Б. Моделирование многоэлементных литий-ионных батарей в энергообеспечивающих комплексах автономных объектов. – Вестник ЮУрГУ. Серия «Энергетика», 2017, т. 17, № 3, с. 86–94.
14. Елизарова А.В., Саитова Г.А. Нейросетевая модель литий-ионной аккумуляторной батареи. – Молодежный вестник УГАТУ. Технические науки, 2021, № 2(25), с. 29–35.
15. Давидов А.О., Жмуров Б.В. Метод диагностики авиационных электрохимических аккумуляторных батарей. – Труды международного симпозиума «Надежность и качество», 2016, т. 2, с. 78–80.
16. Кедринский И.А., Яковлев В.Г. Li-ионные аккумуляторы. Красноярск: Платина, 2002, 268 с.
17. Багоцкий В.С. Основы электрохимии. М.: Химия, 1988, 401 с.
18. Старостин И.Е., Степанкин А.Г. Программная реализация методов современной неравновесной термодинамики и система симуляции физико-химических процессов SimulationNonEqProcSS v.0.1.0. Бо Бассен, Маврикий: Lambert Academic Publishing, 2019, 127 с.
19. Sansone G. Equazioni Differenziali Nel Campo Reale. P. 1. Bologna: Parte Prima, 1948, 347 p.
20. Немыцкий В.В., Степанов В.В. Качественная теория дифференциальных уравнений. М.-Л.: ОГИЗ, 1947, 448 с.
21. Katok A., Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. Cambridge: University Press, 1999, 768 p.
22. Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Cham: Springer, 2002, 947 p.
23. Малинецкий Г.Г. Математические основы синергетики: Хаос, структуры, вычислительный эксперимент. М.: Ленанд, 2017, 312 с.
24. Пригожин И., Дефей Р. Химическая термодинамика. Новосибирск: Наука, 1966, 512 с.
25. Халютин С.П. и др. Цифровые двойники в теории и практике авиационной электроэнергетики. – Электричество, 2022, № 10, с. 4–13.
26. Демидович В.Б. Цифровые двойники процессов индукционного нагрева в металлургической промышленности. – Электричество, 2023, № 4, с. 55–60.
#
1. Levin A.V., Khalyutin S.P., Zhmurov B.V. Nauchniy vestnik MGTU GA. – in Russ. (Scientific Bulletin of the Moscow State Technical University GA, 2015, No. 213, pp. 50–57.
2. Nuzzo P. et al. A Contract-Based Methodology for Aircraft Electric Power System Desig. – IEEE Access, 2014, vol. 2., pp. 125–149, DOI:10.1109/ACCESS.2013.2295764.
3. Buticchi G., Costa L., Liserre M. Improving System Efficiency for the More Electric Aircraft: A Look at DC/DC Converters for the Avionic Onboard DC Microgrid. – IEEE Industrial Electronics Magazine, 2017, 11(3), pp. 26–36, DOI:10.1109/MIE.2017.2723911.
4. Ivanov V.V., Marahovskiy I.V., Kravchenko S.V. Nauchnye chteniya po aviatsii, posvyashchennye pamyati N.E. Zhukovskogo – in Russ. (Scientific Readings on Aviation Dedicated to the Memory of N.E. Zhukovsky), 2013, No. 1, pp. 325–329.
5. Tariq M. et al. Reliability, Dead-Time, and Feasibility Analysis of a Novel Modular Tankless ZCS Inverter for More Electric Aircraft. – IEEE Transactions on Transportation Electrification, 2017, 3(4), pp. 843–854, DOI:10.1109/TTE.2017.2704283.
6. Tyulyaev M.L. et al. Sistemy elektrosnabzheniya letatel'nyh apparatov (Aircraft Power Supply Systems). M.: VUNTS VVS «VVA im. prof. N.E. Zhukovskogo i YU.A. Gagarina», 2010, 427 p.
7. Borisov P.V. et al. Izvestiya Peterburgskogo universiteta putey soobshcheniya – in Russ. (Proceedings of the St. Petersburg University of Railway Engineering), 2023, vol. 20, iss. 1, pp. 207–221.
8. Handorin M.M., Bukreev V.G. Izvestiya vysshih uchebnyh zavedeniy. Priborostroenie – in Russ. (News of Higher Educational Institutions. Instrumentation), 2021, vol. 64, No. 8, pp. 649–655.
9. Kolosnitsyn D.V. et al. Elektrohimicheskaya energetika – in Russ. (Electrochemical Power Engineering), 2021, vol. 21, No. 2, pp. 96–107.
10. Smith K., Wang C.-Y. Solid-State Diffusion Limitations on Pulse Operation of a Lithium-Ion Cell for Hybrid Electric Vehicles. – Journal of Power Sources, 2006, vol. 161, pp. 628–639, DOI:10.1016/j.jpowsour.2006.03.050.
11. Starostin I.E., Khalyutin S.P. Elektropitanie – in Russ. (Power Supply), 2022, No. 4, pp. 4–14.
12. Starostin I.E., Khalyutin S.P., Druzhinin A.A. Vibration Analysis Based on the Method of Mathematical Prototyping of Energy Processes. – International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM 2023, 2023, pp. 1650–1656, DOI: 10.1109/EDM58354.2023.10225170.
13. Serdechnyy D.V., Tomashevskiy Yu.B. Vestnik YuUrGU. Seriya «Energetika» – in Russ. (Bulletin of SUSU. The Series "Power Engineering"), 2017, vol. 17, No. 3, pp. 86–94.
14. Elizarova A.V., Saitova G.А. Molodezhnyy vestnik UGATU. Tekhnicheskie nauki – in Russ. (UGATU Youth Bulletin. Technical Sciences), 2021, No. 2(25), pp. 29–35.
15. Davidov A.O., Zhmurov B.V. Trudy mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo» – in Russ. (Proceedings of the International Symposium "Reliability and Quality"), 2016, vol. 2, pp. 78–80.
16. Kedrinskiy I.A., Yakovlev V.G. Li-ionnye akkumulyatory (Li-Ion Batteries). Krasnoyarsk: Platina, 2002, 268 p.
17. Bagotskiy V.S. Osnovy elektrohimii (Fundamentals of Electro-chemistry). M.: Himiya, 1988, 401 p.
18. Starostin I.E., Stepankin A.G. Programmnaya realizatsiya metodov sovremennoy neravnovesnoy termodinamiki i sistema simulyatsii fiziko-himicheskih protsessov SimulationNonEqProcSS v.0.1.0 (Software implementation of methods of modern nonequilibrium thermodynamics. And the system of simulation of physico-chemical processes Simulation NonE q Pro cSS v.0.1.0). Bo Bassen, Mavrikiy: Lambert Academic Publishing, 2019, 127 p.
19. Sansone G. Equazioni Differenziali Nel Campo Reale. P. 1. Bologna: Parte Prima, 1948, 347 p.
20. Nemytskiy V.V., Stepanov V.V. Kachestvennaya teoriya differentsial'nyh uravneniy (Qualitative Theory of Differential Equations). М.-L.: ОGIZ, 1947, 448 p.
21. Katok A., Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. Cambridge: University Press, 1999, 768 p.
22. Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Cham: Springer, 2002, 947 p.
23. Malinetskiy G.G. Matematicheskie osnovy sinergetiki: Haos, struktury, vychislitel'nyy eksperiment (Mathematical Foundations of Synergetics: Chaos, Structures, Computational Experiment). M.: Lenand, 2017, 312 p.
24. Prigozhin I., Defey R. Himicheskaya termodinamika (Chemical Thermodynamics). Novosibirsk: Nauka, 1966, 512 p.
25. Khalyutin S.P. et al. Elektrichestvo – in Russ. (Electricity), 2022, No. 10, pp. 4–13.
26. Demidovich V.B. Elektrichestvo – in Russ. (Electricity), 2023, No. 4, pp. 55–60