О переходе на «зеленую авиацию»
Аннотация
Для решения проблемы уменьшения вредных выбросов в атмосферу разработаны принципы «зеленой авиации», в основе которых лежит оптимизация расписаний полетов, изменение конструкции самолетов, использование легких композиционных материалов, изменение принципа действия и конструкции двигателя и используемого топлива. НИЦ «Институт им. Н.Е. Жуковского» работает в этом направлении вместе с кооперацией институтов и развивает принципы «зеленой авиации». За последние несколько лет его сотрудниками разработан ряд мощных импульсных преобразователей напряжения в составе силовых установок для электрических и гибридных самолетов, в частности для зарядки аккумуляторов на борту самолета. Благодаря использованию современных твердотельных электронных компонентов и эргономичной конструкции удалось добиться удельной мощности от единиц до десятков кВт/кг. В области физики низкотемпературной плазмы также ведутся работы по электрогидродинамическим системам управления газовыми потоками летательных аппаратов, что имеет первостепенное значение для повышения аэродинамической и энергетической эффективности и тем самым может привести к решению экологической проблемы снижения выбросов вредных веществ, оксидов углерода и азота и значительной экономии топлива.
Литература
2. Ritchie H., Roser M. CO2 and Greenhouse Gas Emissions. – Our world in Data, 2020.
3. Tarrasón L. et al. Study on Air Quality Impacts of non-LTO Emissions from Aviation. – Norwegian Meteorological Institute, 2004.
4. Миягашева В.А. и др. Экологические проблемы в авиации и пути их решения. – Актуальные проблемы авиации и космонавтики, 2016, т. 1, № 12, с. 808–810.
5. Sarkar A.N. Evolving Green Aviation Transport System: A Holistic Approach to Sustainable Green Market Development. – American Journal of Climate Change, 2012, 01 (03), DOI:10.4236/ajcc.2012.13014.
6. Гурьев В.И. и др. Алгоритмы обработки данных высокотемпературного волоконно-оптического датчика температуры в режиме реального времени. – Сборник тезисов VII Всероссийского конгресса молодых ученых. СПб.: Ун-т ИТМО, 2018.
7. Аксарин С.М. и др. Разработка датчика для спектрального мониторинга тепловых процессов в камерах сгорания авиационных газотурбинных двигателей. – Сборник тезисов VII Всероссийского конгресса молодых ученых. СПб.: Ун-т ИТМО, 2018.
8. IPCC, “IPCC Special Report Aviation and the Global Atmosphere,” 1999, 23 p.
9. Филиал ПАО «Корпорация «Иркут» – «Региональные самолёты» [Электрон. ресурс], URL: http://www.scac.ru/ru/products/sukhoi-superjet100/ (дата обращения 10.02.2021).
10. Romeo G., Borello F., Correa G. ENFICA-FC: Design, Realization and Flight Test of All Electric 2-Seat Aircraft Powered by Fuel Cells. – 27th International Congress of the Aeronautical Sciences, 2010.
11. Swaminathan N., Cao Y. An Overview of High-Conversion High-Voltage DC–DC Converters for Electrified Aviation Power Distribution System. – IEEE Transactions on Transportation Electrification, 2020, vol. 6, No. 4, pp. 1740–1754, DOI:10.1109/TTE.2020.3009152.
12. Benegas Jayme D. Evaluation of the Hybrid-Electric Aircraft Project Airbus E-Fan X : дис. – Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2019.
13. Гуров В.И. Уникальный самолет Ту-155 с водородным двигателем. – Двигатель, 2013, № 5, c. 4–6.
14. Channegowda P. et al. Megawatt Class Ultra High Density DC-DC Converters for Future Electric Aircraft Systems. – AIAA Propulsion and Energy 2019 Forum, 2019, DOI:10.2514/6.2019-4518.
15. Moshkunov S.I., Khomich V.Yu., Shershunova E.A. A Buck–Boost Voltage Converter for Charging a Battery on Board Electric Aircraft. – Techn. Phys. Letters, 2020, 46(8), 749-751.
16. Varyukhin A.N. et al. Powerful Switching DC/DC Converter on Silicon Carbide Transistors. – Applied Physics, 2021, (1), pp. 75–81.
17. Hitachi Metals, Ltd Fraunhofer IISB and Hitachi Metals Develop New Technology to Enhance the Power Density in Compact On-Board Chargers. [Электрон. ресурс], URL: https://www.hitachi-metals.co.jp/e/press/news/2019/n0416.html (дата обращения 06.04.2022).
18. Renovis Replace&Repair SRZA [Электрон. ресурс], URL: https://www.renovis.net/servoazionamenti/ (дата обращения 06.04.2022).
19. Шершунова Е.А. и др. Четырехфазный импульсный преобразователь постоянного напряжения для применения в составе гибридных и электрических силовых установок летательных аппаратов. –19 Международная конференция «Авиация и космонавтика», 2020, с. 232–233.
20. Варюхин А.Н. и др. Силовой многофазный импульсный преобразователь для гибридных летательных аппаратов. – Известия Российской академии наук. Энергетика, 2019, № 6, с. 121–129.
21. Варюхин А. Н. и др. Об использовании многофазных повышающих импульсных преобразователей в составе силовых установок для зеленой авиации. – Тезисы докладов Научно-практической конференции учёных России и Хорватии, 2019, с. 192–194.
22. Варюхин А.Н. и др. Оптимизация архитектуры силовой установки гибридного летательного аппарата. – Электричество, 2021, № 8, с. 4–12.
23. Варюхин А.Н. и др. Мощный преобразователь напряжения для заряда АКБ на борту летательного аппарата с гибридной силовой установкой. – Доклады Российской академии наук. Физика, технические науки, 2022, т. 503, № 1. с. 63–68.
24. Gohardani A.S., Doulgeris G., Singh R. Challenges of Future Aircraft Propulsion: A Review of Distributed Propulsion Technology and Its Potential Application for the All-Electric Commercial Aircraft. – Progress in Aerospace Sciences, 2011, vol. 47, No. 5, pp. 369–391.
25. Moshkunov S.I. et al. Electrohydrodynamic Effect Resulting from High-Frequency Barrier Discharge in Gas. – Plasma Physics Reports, 2012, vol. 38, No. 13, pp. 1040–1045, DOI:10.1134/S1063780X1208020X.
26. Baranov S.A. et al. Experimental Cross-Flow Control in a 3D Boundary Layer by Multi-Discharge Plasma Actuators. – Aerospace Science and Technology, 2021, vol. 112, p. 106643.
27. Chernyshev S.L., Kiselev A.P., Kuryachii A.P. Laminar Flow Control Research at TsAGI: Past and Present. – Progress in Aerospace Sciences, 2011, vol. 47, No. 3, pp. 169–185.
28. Benard N., Moreau E. Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control. – Experiments in Fluids, 2014, vol. 55, No.11, pp.1–43.
29. Гамируллин М.Д. и др. Исследование упрощенной схемы набора плазменных актуаторов для управления течением в пограничном слое. – Ученые записки ЦАГИ, 2014, т. 45, № 6, c. 28–35.
30. Abbas A., De Vicente J., Valero E. Aerodynamic Technologies to Improve Aircraft Performance. – Aerospace Science and Technology, 2013, vol. 28, No.1, pp. 100–132.
31. Arnal D., Casalis G. Laminar-turbulent transition prediction in three-dimensional flows //Progress in Aerospace Sciences, 2000, vol. 36, No. 2, pp. 173–191.
32. Amitay M., Glezer A. Role of Actuation Frequency in Controlled Flow Reattachment over a Stalled Airfoil. – AIAA Journal, 2002, vol. 40(2), pp. 209–216, DOI:10.2514/2.1662.
33. Amitay M., Glezer A. Controlled Transients of Flow Reattachment over Stalled Airfoils. – International Journal of Heat and Fluid Flow, 2002, vol. 23(5), pp. 690–699, DOI:10.1016/S0142-727X(02)00165-0.
34. Konstantinidis E. Active Control of Bluff-Body Flows Using Plasma Actuators. – Actuators, 2019, vol. 8(3), DOI:10.3390/act8030066.
35. Caruana D. Plasmas for Aerodynamic Control. – Plasma Physics and Controlled Fusion, 2010, vol. 52 (12), DOI:10.1088/0741-3335/52/12/124045.
36. Poggie J., McLaughlin T., Leonov S. Plasma Aerodynamics: Current Status and Future Directions. – AerospaceLab Journal, 2015, No. 10, DOI:10.12762/2015.AL10-01.
37. Akansu Y.E., Karakaya F., Şanlısoy A. Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator. – The European Physical Journal Conferences, 2013, vol. 45, DOI:10.1051/epjconf/20134501008.
38. Van Wie D., Nedungadi A. Plasma Aerodynamic Flow Control for Hypersonic Inlets. – 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004, DOI:10.2514/6.2004-4129.
39. Corke T.C., Thomas F.O. Active and Passive Turbulent Boundary-Layer Drag Reduction. – AIAA Journal, 2018, vol. 56 (10), pp. 3835–3847, DOI:10.2514/1.J056949.
40. Гамируллин М.Д. и др. Экспериментальная установка для исследования плазменных актуаторов, создающих электрогидродинамический поток. – Прикладная физика, 2015, № 5, c. 95–101.
#
1. Kurbatova A.I., Tarko А.М. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost' zhiznedeyatel'nosti – in Russ. (Bulletin of the Peoples' Friendship University of Russia. Series: Ecology and Life Safety), 2015, No. 1, pp. 117–123.
2. Ritchie H., Roser M. CO2 and Greenhouse Gas Emissions. – Our world in Data, 2020.
3. Tarrasón L. et al. Study on Air Quality Impacts of non-LTO Emissions from Aviation. – Norwegian Meteorological Institute, 2004.
4. Miyagasheva V.А. et al. Aktual'nye problemy aviatsii i kosmonavtiki – in Russ. (Actual Problems of Aviation and Cosmonautics), 2016, vol. 1, No. 12, pp. 808–810.
5. Sarkar A.N. Evolving Green Aviation Transport System: A Holistic Approach to Sustainable Green Market Development. – American Journal of Climate Change, 2012, 01 (03), DOI:10.4236/ajcc.2012.13014.
6. Gur'ev V.I. et al. Sbornik tezisov VII Vserossiyskogo kongressa molodyh uchenyh (Collection of Abstracts of the VII All-Russian Congress of Young Scientists). SPb.: Un-t IТМО, 2018.
7. Aksarin S.М. et al. Sbornik tezisov VII Vserossiyskogo kongressa molodyh uchenyh – in Russ. (Collection of Abstracts of the VII All-Russian Congress of Young Scientists). SPb.: Un-t IТМО, 2018.
8. IPCC, “IPCC Special Report Aviation and the Global Atmosphere,” 1999, 23 p.
9. Filial PAO «Korporatsiya «Irkut» – «Regional'nye samolyoty» (Branch of PJSC Irkut Corporation – Regional Aircraft) [Electron. resource], URL: http://www.scac.ru/ru/products/sukhoi-superjet100/ (Date of appeal 10.02.2021).
10. Romeo G., Borello F., Correa G. ENFICA-FC: Design, Realization and Flight Test of All Electric 2-Seat Aircraft Powered by Fuel Cells. – 27th International Congress of the Aeronautical Sciences, 2010.
11. Swaminathan N., Cao Y. An Overview of High-Conversion High-Voltage DC–DC Converters for Electrified Aviation Power Dis-tribution System. – IEEE Transactions on Transportation Electrification, 2020, vol. 6, No. 4, pp. 1740–1754, DOI:10.1109/TTE.2020.3009152.
12. Benegas Jayme D. Evaluation of the Hybrid-Electric Aircraft Project Airbus E-Fan X: dis. – Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2019.
13. Gurov V.I. Dvigatel' – in Russ. (Engine), 2013, No. 5, pp. 4–6.
14. Channegowda P. et al. Megawatt Class Ultra High Density DC-DC Converters for Future Electric Aircraft Systems. – AIAA Propulsion and Energy 2019 Forum, 2019, DOI:10.2514/6.2019-4518.
15. Moshkunov S.I., Khomich V.Yu., Shershunova E.A. A Buck–Boost Voltage Converter for Charging a Battery on Board Electric Aircraft. – Techn. Phys. Letters, 2020, 46(8), 749-751.
16. Varyukhin A.N. et al. Powerful Switching DC/DC Converter on Silicon Carbide Transistors. – Applied Physics, 2021, (1), pp. 75–81.
17. Hitachi Metals, Ltd Fraunhofer IISB and Hitachi Metals Develop New Technology to Enhance the Power Density in Compact On-Board Chargers. [Electron. resource], URL: https://www.hita-chi-metals.co.jp/e/press/news/2019/n0416.html (Date of appeal 06.04.2022).
18. Renovis Replace&Repair SRZA [Electron. resource], URL: https://www.renovis.net/servoazionamenti/ (Date of appeal 06.04.2022).
19. Shershunova Е.А. et al. 19 Mezhdunarodnaya konferentsiya «Aviatsiya i kosmonavtika» – in Russ. (19th International Conference "Aviation and Cosmonautics"), 2020, pp. 232–233.
20. Varyuhin A.N. et al. Izvestiya Rossiyskoy akademii nauk. Energetika – in Russ. (Proceedings of the Russian Academy of Sciences. Power Engineering), 2019, No. 6, pp. 121–129.
21. Varyuhin A.N. et al. Tezisy dokladov Nauchno-prakticheskoy konferentsii uchyonyh Rossii i Horvatii – in Russ. (Abstracts of the Scientific and Practical Conference of Scientists from Russia and Croatia), 2019, pp. 192–194.
22. Varyuhin A.N. et al. Elektrichestvo – in. Russ. (Electricity), 2021, No. 8, pp. 4–12.
23. Varyuhin A.N. et al. Doklady Rossiyskoy akademii nauk. Fizika, tekhnicheskie nauki – in Russ. (Reports of the Russian Academy of Sciences. Physics, Technical Sciences), 2022, vol. 503, No.1. pp. 63–68.
24. Gohardani A. S., Doulgeris G., Singh R. Challenges of Future Aircraft Propulsion: A Review of Distributed Propulsion Technology and Its Potential Application for the All-Electric Commercial Aircraft. – Progress in Aerospace Sciences, 2011, vol. 47, No. 5, pp. 369–391.
25. Moshkunov S. I. et al. Electrohydrodynamic Effect Resulting from High-Frequency Barrier Discharge in Gas. – Plasma Physics Reports, 2012, vol. 38, No. 13, pp. 1040–1045, DOI:10.1134/S1063780X1208020X.
26. Baranov S.A. et al. Experimental Cross-Flow Control in a 3D Boundary Layer by Multi-Discharge Plasma Actuators. – Aerospace Science and Technology, 2021, vol. 112, p. 106643.
27. Chernyshev S.L., Kiselev A.P., Kuryachii A.P. Laminar Flow Control Research at TsAGI: Past and Present. – Progress in Aerospace Sciences, 2011, vol. 47, No. 3, pp. 169–185.
28. Benard N., Moreau E. Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control. – Experiments in Fluids, 2014, vol. 55, No.11, pp.1–43.
29. Gamirullin M.D. et al. Uchenye zapiski TsAGI – in Russ. (Scientific Notes of TsAGI), 2014, vol. 45, No. 6, pp. 28–35.
30. Abbas A., De Vicente J., Valero E. Aerodynamic Technologies to Improve Aircraft Performance. – Aerospace Science and Technology, 2013, vol. 28, No.1, pp. 100–132.
31. Arnal D., Casalis G. Laminar-turbulent transition prediction in three-dimensional flows // Progress in Aerospace Sciences, 2000, vol. 36, No. 2, pp. 173–191.
32. Amitay M., Glezer A. Role of Actuation Frequency in Controlled Flow Reattachment over a Stalled Airfoil. – AIAA Journal, 2002, vol. 40(2), pp. 209–216, DOI:10.2514/2.1662.
33. Amitay M., Glezer A. Controlled Transients of Flow Reattachment over Stalled Airfoils. – International Journal of Heat and Fluid Flow, 2002, vol. 23(5), pp. 690–699, DOI:10.1016/S0142-727X(02)00165-0.
34. Konstantinidis E. Active Control of Bluff-Body Flows Using Plasma Actuators. – Actuators, 2019, vol. 8(3), DOI:10.3390/act8030066.
35. Caruana D. Plasmas for Aerodynamic Control. – Plasma Physics and Controlled Fusion, 2010, vol. 52 (12), DOI:10.1088/0741-3335/52/12/124045.
36. Poggie J., McLaughlin T., Leonov S. Plasma Aerodynamics: Current Status and Future Directions. – AerospaceLab Journal, 2015, No. 10, DOI:10.12762/2015.AL10-01.
37. Akansu Y.E., Karakaya F., Şanlısoy A. Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator. – The European Physical Journal Conferences, 2013, vol. 45, DOI:10.1051/epjconf/20134501008.
38. Van Wie D., Nedungadi A. Plasma Aerodynamic Flow Control for Hypersonic Inlets. – 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004, DOI:10.2514/6.2004-4129.
39. Corke T.C., Thomas F.O. Active and Passive Turbulent Boundary-Layer Drag Reduction. – AIAA Journal, 2018, vol. 56 (10), pp. 3835–3847, DOI:10.2514/1.J056949.
40. Gamirullin M.D. et al. Prikladnaya fizika – in Russ. (Applied Physics), 2015, No. 5, pp. 95–101.