Исследование режимов функционирования управляемых шунтирующих реакторов в электрических сетях напряжением 330 кВ и выше
Аннотация
В современных энергосистемах, где интегрированы крупномасштабные возобновляемые источники энергии, необходимы более прогрессивные подходы к управлению потокораспределением реактивной мощности и стабилизации напряжения. В условиях кратковременных и резких изменений режима возникает необходимость в совершенствовании методики выбора параметров управляемых шунтирующих реакторов, применяемых для эффективной компенсации потоков реактивной мощности и стабилизации напряжения в высоковольтных электрических сетях энергосистемы. Существующая методика основана на действующих значениях параметров режима и в указанных условиях при выборе шунтирующих реакторов работает неэффективно. Статья посвящена усовершенствованию метода выбора шунтирующих реакторов по мгновенной мощности с целью устранения профицита реактивной мощности, созданного зарядной мощностью линий электропередачи в электрических сетях напряжением 330 кВ и выше. На основе предложенной методики описан алгоритм функционирования управляемых шунтирующих реакторов, размещенных в приоритетных узлах 330 кВ Азербайджанской энергосистемы, и исследованы их эксплуатационные режимы работы. Результаты исследования показали, что в соответствии с изменениями режимов электросети шунтирующие реакторы, действуя в реальном времени, стабилизируют и обеспечивают напряжение на шинах 330 кВ системы в допустимой области, что повышает устойчивость энергосистемы по напряжению.
Литература
2. Управляемые подмагничиванием электрические реакторы / Под ред. А.М. Брянцева. М.: Знак, 2010, 288 с.
3. Hashimov А.М., Guliyev H.B., Babayeva А.R. Shunt Reactors Control Algorithm Using Fuzzy Sets Theory. – International Journal on Technical and Physical Problems of Engineering, 2019, iss. 38, vol. 11, No. 1, pp. 10–15.
4. Vanishree J., Ramesh V. Optimization of Size and Cost of Static VAR Compensator Using Dragonfly Algorithm for Voltage Profile Improvement in Power Transmission Systems. – International Journal of Renewable Energy Research, 2018, vol. 8, No. 1, pp. 56–66, DOI: 10.20508/ijrer.v8i1.6933.g7281.
5. Илюшин П.В. Расширение области допустимых режимов для генерирующих установок объектов распределенной генерации при провалах напряжения. – Энергетик, 2018, № 11, c. 21–27.
6. Ilyushin P.V., Mokeev A.V., Narovlyanskii V.G. Opportunities and Perspectives of PMU Application in Power Districts with Distributed Energy Resources. – Rudenko International Conference on Methodological Problems in Reliability Study of Large Energy Systems, 2018, vol. 58, DOI: 10.1051/e3sconf/20185801001.
7. Biswas P.P. et al. Optimal Placement and Sizing of FACTS Devices for Optimal Power Flow in a Wind Power İntegrated Electrical Network. – Neural Computing and Applications, 2021, 33(2), DOI: 10.1007/s00521-020-05453-x.
8. Hashimov A.M., Guliyev H.B., Babayeva A.R. Method and Algorithm of Control of Shunt Reactors of High-Voltage Power Network in Maintenance Modes Based on Fuzzy Logic Theory. – 6th International Conference on Modern Electric Power Systems, 2019, DOI: 10.1109/MEPS46793.2019.9395043.
9. Hashimov A.M., Guliyev H.B., Babayeva A.R. Placement of Shunt Reactors in High-Voltage Network Using Fuzzy Constraints. – Rudenko International Conference on Methodological Problems in Reliability Study of Large Energy Systems, 2019, vol. 139, DOI: 10.1051/e3sconf/201913901052.
10. Belyaev A.N., Izotova K.A., Kashin I.V. Stability of Ultra Long-Distance AC Power Transmission Lines with Controlled Shunt Compensation Devices. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, DOI: 10.1109/EIConRus.2018.8317163.
11. Mehmet T. et al. A Review of Magnetically Controlled Shunt Reactor for Power Quality Improvement with Renewable Energy Applications. – Renewable and Sustainable Energy Reviews, 2017, vol. 77, DOI: 10.1016/j.rser.2017.04.008.
12. Tao Zheng et al. Design and Analysis on the Turn-to-Turn Fault Protection Scheme for the Control Winding of a Magnetically Controlled Shunt Reactor. – IEEE Transactions on Power Delivery, 2015, iss. 2, vol. 30, pp.967–975, DOI: 10.1109/TPWRD.2014.2352320.
13. Kuchansky V. Application of Controlled Shunt Reactors for Suppression Abnormal Resonance Overvoltages in Assymetric Modes. – IEEE 6th International Conference on Energy Smart Systems, 2019, pp. 122–125, DOI: 10.1109/ESS.2019.8764196.
14. Aleksandrova M.I. et al. A Development of Shunt Reactor Controlled Energizing Theory. – 2nd International Youth Scientific and Technical Conference on Relay Protection and Automation (RPA), 2019, DOI: 10.1109/RPA47751.2019.8958014.
15. Belyayev A.N., Serguei V.S. Steady-state and Transient Stability of 500 kV Long-Distance AC Transmission Lines with Magnetically Controlled Shunt Reactors. – 2005 IEEE Russia Power Tech, 2005, DOI: 10.1109/PTC.2005.4524464.
16. Gusev A.S., Suvorov A.A., Sulaymanov A.O. Using Controlled Shunt Reactors for Voltage Stabilization on the Example of Real Electric Power System. – IOP Conference Series: Materials Science and Engineering, 2015, vol. 93, DOI: 10.1088/1757-899X/93/1/012016.
17. Balametov A.B., Salimova A.K., Balametov E.A. Development and İmplementation of 20 kv İntelligent Power Distribution Networks. – International Journal on Technical and Physical Problems of Engineering, 2017, iss. 30, vol. 9, No. 1, pp. 7–11.
18. Гашимов А.М., Гулиев Г.Б., Бабаева А.Р. Многополюсный контроллер нечеткой логики для усовершенствования управления шунтирующими реакторами. – Электричество, 2019, № 6, c. 26–32.
#
1. Dolgopolov A.G. et al. Problemy regional’noy energetiki – in Russ. (Problems of the Regional Energetics), 2011, vol. 17, No. 3, pp. 2–7.
2. Upravlyaemye podmagnichivaniem elektricheskie reaktory (Magnetically Controlled Electric Reactors). / Ed. by A.M. Bryantsev. M.: Znak, 2010, 288 p.
3. Hashimov А.М., Guliyev H.B., Babayeva А.R. Shunt Reactors Control Algorithm Using Fuzzy Sets Theory. – International Journal on Technical and Physical Problems of Engineering, 2019, iss. 38, vol. 11, No. 1, pp. 10–15.
4. Vanishree J., Ramesh V. Optimization of Size and Cost of Static VAR Compensator Using Dragonfly Algorithm for Voltage Profile Improvement in Power Transmission Systems. – International Journal of Renewable Energy Research, 2018, vol. 8, No. 1, pp. 56–66, DOI: 10.20508/ijrer.v8i1.6933.g7281.
5. Ilyushin P.V. Energetik – in Russ. (Power Engineer), 2018, No. 11, pp. 21–27.
6. Ilyushin P.V., Mokeev A.V., Narovlyanskii V.G. Opportunities and Perspectives of PMU Application in Power Districts with Distributed Energy Resources. – Rudenko International Conference on Methodological Problems in Reliability Study of Large Energy Systems, 2018, vol. 58, DOI: 10.1051/e3sconf/20185801001.
7. Biswas P.P. et al. Optimal Placement and Sizing of FACTS Devices for Optimal Power Flow in a Wind Power İntegrated Electrical Network. – Neural Computing and Applications, 2021, 33(2), DOI: 10.1007/s00521-020-05453-x.
8. Hashimov A.M., Guliyev H.B., Babayeva A.R. Method and Algorithm of Control of Shunt Reactors of High-Voltage Power Network in Maintenance Modes Based on Fuzzy Logic Theory. – 6th International Conference on Modern Electric Power Systems, 2019, DOI: 10.1109/MEPS46793.2019.9395043.
9. Hashimov A.M., Guliyev H.B., Babayeva A.R. Placement of Shunt Reactors in High-Voltage Network Using Fuzzy Constraints. – Rudenko International Conference on Methodological Problems in Reliability Study of Large Energy Systems, 2019, vol. 139, DOI: 10.1051/e3sconf/201913901052.
10. Belyaev A.N., Izotova K.A., Kashin I.V. Stability of Ultra Long-Distance AC Power Transmission Lines with Controlled Shunt Compensation Devices. – IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, DOI: 10.1109/EIConRus.2018.8317163.
11. Mehmet T. et al. A Review of Magnetically Controlled Shunt Reactor for Power Quality Improvement with Renewable Energy Applications. – Renewable and Sustainable Energy Reviews, 2017, vol. 77, DOI: 10.1016/j.rser.2017.04.008.
12. Tao Zheng et al. Design and Analysis on the Turn-to-Turn Fault Protection Scheme for the Control Winding of a Magnetically Controlled Shunt Reactor. – IEEE Transactions on Power Delivery, 2015, iss. 2, vol. 30, pp.967–975, DOI: 10.1109/TPWRD.2014.2352320.
13. Kuchansky V. Application of Controlled Shunt Reactors for Suppression Abnormal Resonance Overvoltages in Assymetric Modes. – IEEE 6th International Conference on Energy Smart Systems, 2019, pp. 122–125, DOI: 10.1109/ESS.2019.8764196.
14. Aleksandrova M.I. et al. A Development of Shunt Reactor Controlled Energizing Theory. – 2nd International Youth Scientific and Technical Conference on Relay Protection and Automation (RPA), 2019, DOI: 10.1109/RPA47751.2019.8958014.
15. Belyayev A.N., Serguei V.S. Steady-state and Transient Stability of 500 kV Long-Distance AC Transmission Lines with Magnetically Controlled Shunt Reactors. – 2005 IEEE Russia Power Tech, 2005, DOI: 10.1109/PTC.2005.4524464.
16. Gusev A.S., Suvorov A.A., Sulaymanov A.O. Using Controlled Shunt Reactors for Voltage Stabilization on the Example of Real Electric Power System. – IOP Conference Series: Materials Science and Engineering, 2015, vol. 93, DOI: 10.1088/1757-899X/93/1/012016.
17. Balametov A.B., Salimova A.K., Balametov E.A. Develop-ment and İmplementation of 20 kv İntelligent Power Distribution Networks. – International Journal on Technical and Physical Problems of Engineering, 2017, iss. 30, vol. 9, No. 1, pp. 7–11.
18. Hashimov A.M., Guliyev H.B., Babaeva A.R. Elektrichestvo – in Russ. (Electricity), 2019, No. 6, pp. 26–32